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I. General Introduction

The purpose of this report is to describe the results of a survey on
the techniques that are available for studying the effect of random parameters
on the response characteristics for linear dynamical systems. We are, there-~
fore, concerned with the properties of the solutions of ordinary linear

differential equations with random parameters.

There are two classes of random parameters that we distinguish between
in this report. They are time independent (constant) random parameters,
and time varying random parameters. In both cases, structural applications

are of interest.

Before, we outline the content of this report, we briefly consider the
history of the general problem of parameter uncertainties and parameter

fluctuations to see why they cannot be overlooked.

Very early in engineering design, factors of safety were introduced to
account for our lack of precise knowledge of the structure and its loads,
factors of safety quantified the fact that loads, material behavior,
structural element properties, etc., could not be accurately estimated.
Indeed Roebling and his engineers in 1880's, by means of very careful
computations, estimated the factor of safety of the then new Brooklyn
Bridge to be above rive. Later estimates in 1944 placed this figure at
four. These factors essentially tell us that column misalignment,
residual stress due to manufacturing errors, reduction of working area due
to corrosion, member weight, joint behavior, etec., etc., would have to be
large indeed before the integrity of the structure could be put into
question. In other words, parameter variability would have to be beyond
all reasonable bounds before the bridge could fail. Roebling and his
engineers were correct in their estimation of the effect of parameter
variability on the safety of their bridge. However, in the first Quebec
Railway Bridge (1907) errors in estimation of member weight, in the effect
of column misalignment and in the behavior of new types of columns, lead

to failure because the effect of parameter variability exceeded the bounds

that the factors of safety could absorb.




Along the same lines, consider the buckling under axial loading of
thin cylindrical and conical shells. The buckling load of such shells
can be calculated. However, in 1950's, 1960's extensive tests of such
shells revealed that the actual buckling loads were significantly lower
than calculated. This discrepancy between calculated and actual was
traced to the fact that there were random deviations from the regular
geometrical shape assumed. These are reflected in the fact that the PDE's
whose solution produces the buckling load contains random variations, in

its parameters.

Randomly time varying parameters occur to a great extent as a result
of environmental fluctuations that effect the system. The vibrations in
aerospace vehicles due to atmospheric turbulence is one prime example.
This is reflected in random load variations on the structure which are of
particular significance, for example, on rotating lifting surfaces such as
helicopter blades. There has been a great deal of attention to this
problem due to the critical nature of the stability and safety of
helicopters.

Liquid sloshing in the tanks which are undergoing vertical excitations,
also is a problem that was actively studied for the stability of the initial
atmospheric stages of the lifting of large rockets. 1In both of these
problems, randomly fluctuating parameters are present in the analytical
equations that model the response characteristics of these components. In
general, inverted beams, pendulums as well as asrodynamic panels subjected
to random end loads, will be described by models with randomly varying

parameters.

Moreover, for the control of such systems with uncertain parameters,
it is necessary to be able to characterize the response of the controlled
system, in order to determine the accuracy required to achieve prescribed

control accuracies.

Surveying the techniques and results in this overall class of problems,
it appears that there exists a natural distinction between the case of
random time dependent (fluctuating) parameters and the case of the random

time independent (constant) parameters. We shall, therefore, distinguish

between these two cases.
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We shall carry on this distinction in the next sections of the

Introduction, as well as the general survey of results.
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I.1 Introduction - Time Varying Structural Equations

Time varying models of engineering systems occur for a number of geo-
metrical, environmental as well as analytical reasons. They occur for
geometrical reasons as a result of the location and directions that external
excitations impact upon a system, while the system's physical parameters (damping,
stiffness, etc.) are assumed to remain fixed. They occur as a result of environ-
mental properties due to chemical effects, thermal effects, and radiation effects
that are reflected in varying physical parameters for the components of the
system. These may be of a periodic random nature or of a monotonic random nature
due to ageing of the components in general. Finally, they occur in studies of
non-linear systems. In particular, if one wishes to study the linearized
equations of small oscillations about some specific (non-equilibrium) system

response, time varying coefficients will be present.

In the geometrical case, those systems which are subjected to base
excitations., such as pendulums and missiles; to end loadings, such as beams
with various supports, and finally to boundary edge loadings, such as plates and

shells, will be described by differential equations with time varying coefficients.

These cases are illustrated in the following figure

(a) _ (b) (c)

-LP°+n(t:)

Po+n(t)

. Figure 1
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These cases lead to differential equations of the following form,

(1.1, 1.2, 1.3] "

Pendulum

(@) 8+cod + (k+n(t)o= 0, (k < 0 for inverted pendulum)

Single Supported Beam 1.1

b + 2 + (p_ + =
(b) L Bw, (p0 n(t:))wxx*"'lxxxx 0

w(o,t) =wxx(0’t) =0, w(l,t) = Wxx(l’t) =0
Infinite panel of unit width in supersonic flow

+ 28w, + =
(c) Ve Bw, wa+ (po+h(t))wxx + wxxxx 0

(boundary conditions same as above)

Using modal expansions, (b) and (c) lead to equations of the form (a).

For the general linear structure that we shall be concerned with in this

development, the model will be assumed to be of the form

M E+C(t) RB+K()E = F(E) . (1.2)

The response vector X , will be n-dimensional for the n-mass structure,
the nxn mass matrix M, will always assumed to be known and most often fixed
(although this is not necessary). The nxn damping matrix C(t) and stiffness
matrix K(t) will, in general, contain randomly varying elements. The n-vector
f represents external excitations that may be random. The external excitation
vector f does not pose any analytical difficulties and may be treated as the
non-homogeneous part of any linear differential equation. It is the randomly
fluctuating coefficients in the matrices C(t), K(t) that generate the dif-
ficulties. Time varying systems are difficult to analyze quantitatively even
in the deterministic setting. Thus, the random setting will be at least as

difficult. Naturally, all will depend upon the assumed properties of these

random coefficients.

* References in Sections I-V are given after Section V.
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‘; If these random coefficients are due to fluctuating external loadings,
they will have frequency spectra (power spectral densities in the second order
stationary case) that will cover a band containing low frequency as well as

!l high frequency components. If the bandwidth is large and relatively comstant,

o then in many cases it makes sense to model the coefficient fluctuations as

EE Gaussian white noise. If, on the other hand, there are definite peaks in the
frequency spectrum and the larger frequency components are less pronounced

:5 (essentially band-limited) then Gaussian white noise is not a suitable model.

~ In this case, so-called, physical noise is the proper model for the coefficient

g§ fluctuations. Finally, when the coefficient fluctuations are due to environ-
mental effects (thermal, chemical, radiation, or ageing) it is natural to model

w the luctuations as slowly varying (i.e., narrow band, low frequency). Small

:S parameters can be applied via approximation schemes. In a related situation

o if there are small random fluctuations about a nominal value. again small parameters

ii can be applied via approximation schemes. However, in this last case, we must
be careful. For example for the simple undamped oscillator [1.4]

LS

.j:

- X + (w2+en(t))x=0, (1.3)

)

A

ﬁ: . if n(t) is the gaussian white noise then no matter how small €>0, the

- second moments, as well as the sample solutions, will become unbounded. Thus,

g even though random fluctuations are small in their variances the system can
still become unstable. This important point cannot be overstressed in analyzing

-~ systems with random coefficients. Therefore careful attention must be paid

Sb always to meaningful approximations, especially when small parameters are

. present.

&: The importance of the white noise assumption for the coefficient

- fluctuations is that the solution process is Markov allowing us to use the

;h many tools available. In particular, the Fokker-Planck equation, the generator

) of the associated diffusion process and finally, the related Ito differential

E: formula can be applied.
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< The statistical moments such as means, variances and covariances can be

:g obtained explicitly for these linear models. In general, however, probability

) densities cannot be obtained explicitly.

For physical noise coefficient processes, the story is quite different.

5 Here, we cannot even obtain the moments explicitly, unless very specific

k} simplifying assumptions are made. For example, if the system coefficient
matrices generate a Lie algebra [1.5] then the solution moments can be obtained

:g explicitly. 1If the physical noise is almost a white noise, an associated system
can be studied with white noise coefficients, having statistical properties that

gﬁ are similar to the original system [1.6], [1.7], [1.8]. Under assumptions

b of small parameters, an associated Markov process can be obtained, which also

will yield valid approximations to the statistical properties of the original

') system. [1.9], [1.10], {1.11].

. Finally, in lieu of all of these,successive approximations must be
és applied [1.12-1.18] simply based upon the assumed physical noise statistics.
" The essential reason that the physical noise coefficient case cannot yield
Ry
d

-~ the exact statistical properties of the response, is simply that the co-
efficient process at any given time is correlated to the response at that time.

. To illustrate this fact, let us consider the simple first order scalar equation

x + (a+n(t))x = 0, (1.4)

Upon taking expectations, we find

- é% E{x(t)} + aE{x\t)} + Eln(t)x(t)} = 0. (1.5)
)

[§

[N )

o

o It is the term E-n(t) x(t),;, that is of concern to us. Since n(t) is

T a physical noise, with dependence upon the past, we cannot simplify this term

T any further. On the other hand, if n(t) is the gaussian white noise, then

n(t), x(t) are independent random variables for any t, which allows us to write

2

Efn(t)x(t); = Ein(t) E-x(t)- . (1.6)
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In view of (1.6), we can then write (1.5) as

a m(t) + (a+E{n(t))m(t) = 0, (1.7)

which is a simple linear scalar equation for the mean response,

m(t) = E{x(t) }.

Naturally, this extends to higher order structural system equations as
well., It is interesting to note at this time, that the many recursive schemes
for obtaining the approximations to the moments, or probability densities, for
the physical noise case base the initial approximation on the assumption of
independence of the coefficient process with the response process. At this time
there does not appear to be any general technique available to obtain even the

exact moments for the linear system with physical noise coefficients.

There are other interesting properties that must be taken into account when
studying the statistical properties of the dynamics of systems with uncertain or
randomly fluctuating coefficients. It is possible that the average, statistical,
properties of the response process may be quite distinct in character from the
actual sample solutions themselves. In particular, the asymptotic behavior of
the mean motion may be divergent or even be undefined (so-called finite
explosion time) yet the actual, sample, behavior of the response will remain
quite regular. This anomalie occurs for systems with random coefficients since
we are dealing not only with the solutions of differential equations, but with

their ensemble averages as well.

We illustrate this non-intuitive behavior with two simple first order

scalar equations.

Example 1.1 - Finite explostion time for moments.

Let ,b, be a zero mean gaussian variable (constant in time), with unit

e , the probability density for b.

1
variance. Thus, p(b) = —

pui
vam




L!:' _9._

_1 We study the mean behavior of the solution to the scalar equation

R

. 2

q x(t) =b"x(t), =x(0)=1 . (1.8)
\ We can easily find the sample solution to (1.8) to be
|
. F_,.
I T.m bzt

x(t)=e , £ 20 (1.9)

el Clearly, the samples are exponentially increasing ag tt~, with a rate

depending upon the specific value bze[O,w).

Now, what can be said about the behavior of the moments, mk(t)==E{xk(t)}?

s
o
s
We merely have to evaluate the expectation
< 2
& K Kbt L3 ke
E{x (t)} = E{e } = — J e e db
o vo2mo 7
> ” 1.10)
1 b (
] - L j (ke= )4
Vam -
,:.
1 th
We see from (1.10), quite obviously, ift >2k then the k= moment
. does not exist! That is, it becomes infinite. Thus, for t>-% all moments
» are infinite, even though the sample solution behavior, from (1.9) is quite
IA.
o4 regular. Hence, the mean motion will not exist after finite time, even though
> the system response is well behaved as exponentially increasing curves.
* We now look at a somewhat more complicated case, with randomly wvarying,
7 physical noise, coefficients.
<
e
, o
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Example 1.2 ~ Increasing Moments - Decreasing Samples

For this example, we assume the fluctuating coefficient, scalar first

order equation,
x(€) + (a+n(t) x(t) =0, (1.11)

where a>0 is a known constant and the stochastic process {n(t), t20},

is gaussian with zero mean and covariance function

2 -|t-s|

Yn(t,S) =E{n(t)n(s)} = oc"e (1.12)

The n-process is a stationary gaussian process, whose spectral density

.2

, 1s absolutely continuous. Therefore, it is known to be [1.19] ergodic.
l+w

Thus, we can equate time averages and ensemble averages, with probability
one. £

In particular, lim % f n(s)ds=E{n(*)} =0 with probability one.

tteo o

The n-process is, in fact, the so-~called Ornstein-Uhlenbeck process [1.20]
whose sample functions are known to be continuous functions with probability
one. (This is in contrast to the random telegraphic signal, a non-gaussian
process whose covariance is given by (1.12), but whose samples are piecewise

constant - (see [1.21] for a discussion)) ,

Thus, we can integrate (1.11) directly, to yield the sample solutions for

x(0)=1, .
-at -J n(s)ds
o

x(t) = e (1.13)

In order to study the asymptotic behavior of the response, x(t), we form
the limit,

t t

-at-[ n(s)ds -a-tf n(s)ds t (1.14)
lim x(t) = lim e o = 1lim e o
tte tteo tteo
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However, by the ergodic properties of the n-process, we have
t

-a-1lim 1 J n(s)ds
t
4o o

1 t
lim (-a-E-J n(s)ds)
o

te (1.15)

-a, with probability one.

Finally, since e_at$0 as t*», it follows that lim x(t)=0 with
tho
probability one. This property is independent of the magnitude of 2! Therefore,

what we have established, is that all sample solutions (i.e. with probability
one) (1.13) of the equation (1.11) will approach zero asymptotically. 1In the
general literature on stochastic linear systems, this is usually referred to

as almost sure asymptotic stability (See e.g. [1.2] or [1.22]).

Now we study the statistical properties of the solution process (1.13)
in order to determine their asymptotic behavior. We concentrate on the moments.
To illustrate the basic results here, it is sufficient to study the mean motiom,

first moment, E{x(t)?.

Since the solution is known explicitly by (1.13), then the mean can be

evaluated as,
t

n(s)
o

t

n(s)ds

N
E{x(t)} = E{e } = e 2t g{e Jo } . (1.16)

The n~process is gaussian, therefore, since linear operators on gaussian
processes, yield gaussian processes (e.g. see [1.20]), it follows that

t
J n(s)ds =N(t) is a gaussian process.
Q

We need merely calculate the mean ad variance to obtain the associated

gaussian density function for N(t), that is

(N-my (£))?
- —=
20,.(t)
p(N,t) = 7333;——- e N (1.17)
vam ON(t)
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We have, by direct calculation
t t
mN(t) = E{N(t)} = E{( n(s)ds} = f E{n(s)}ds = 0
o o
t t t
2
Oﬁ(t) = E{N"(t)} = E{ f n(s)ds 2} = E{f dt [ds n(t)n(s)} (1.18)
o o o
’t t t t
= J dt J ds E{n(t)n(s)} = Jdr J ds 02 e—|r-s|
o] o] o o
= 26%[¢ + e t-1].
Since it is easily seen by direct calculation, that
2
o . (t)
E{e.N(t)} = exp [——HE——],
then upon substituting the result of (1.18) vields
(o2-a)t o (e -1 ' (1.19)
E{x(t)}.= e e .
c e (Oz—a)t
As t approaches infinity it is obvious that the term e
determines the asymptotic behavior of (1.19).
Therefore, for 02>a, the mean motion satisfies,
lim E{x(t)} = = (1.20)

t e

with exponential rate of increase. Yet for any 02 we have seen that the

samples approach zero asymptotically with probability one!
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Again, this illustrates completely opposite behavior of the sample

responses and the mean response for systems with random coefficients.

Such non-intuitive features of systems with uncertain or randomly fluctuating

coefficients make it imperative that when assuming statistics of the coefficient
processes the induced statistical properties of the response be carefully
investigated when actual engineering design considerations are to be made for

structures and their controllers.

Clearly, the statistical measures may be quite misleading as to the nature
of the true response characteristics. (See [1.23] for an early discussion of
this problem, and [1.24] for the exact statement relation asymptotic moment

behavior and asymptotic sample behavior).

It follows that we must further question what the statistics can tell us

about the structural response fluctuationms.

We will deal with these questions along with the development of the

statistical characteristics below.

We will first look at the white noise coefficient case, the physical noise
coefficient case, and various approximation schemes in that order. We will
concentrate on what statistical measures (moments, probability densities) can be

obtained exactly, or approximately.
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I.2 Introduction - Time Invariant Structural Equations

This introduction is concerned with response prediction in a time-
invariant system when it is not possible to specify the system exactly.
Two questions immediately come to mind, First, do situations exist
where it is not possible to specify a system exactly as is required for
exact response prediction? Second, does it make any great difference to
the engineer (in response prediction) if he does not have accurate sys-
ten specification? It is instructive to develop reasons why the answer
to each of these questions is sonetimes yes. Two preliminary remarks
are in order before proceeding.

e know that in classical mechanics, applied mechanics, structures,
small vibration, in text books, and in most design procedures, the sys-
ten is regarded as known exactly. That is, masses, stiffnesses, and
dissipation are regarded as known exactly. Response prediction in these
"ideal" situations is thus exact, of course. The possibility that the
system specification is in many practical engineering situations uncer-
tain is never brought up for consideration.

For any rational discussion of the influence of system uncertainty
on accuracy of response prediction, it is important to clearly specify
the type of system under consideration so that the scope of the problem
is kept within reasonable bounds. Ve assume the system is holonomic
with generalized coordinates Qps eees 9o where n is finite; thus, the
system has n-degrees of freedom. We next assume the configuration
9, =T L., = q, = 0 is one of stable equilibrium. We further assume small
motion about this configuration of equilibrium, and take the dissipation
to be viscous. To obtain the equations of motion by Lagrange”s method,

we require the kinetic energy T, the dissipation function F, the

» 9.V o) N R SN M) J3
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potential enexgy V, and the virtual work 8§ W of the external forces. We
know [ ] that we may write

1
. vl
™99 7 K5kd39%

F = 8W = f_(t)éq, (1.21)
i j

Cjkqjqk ’
where sumnation convention is employed and the fj(t) are the external
force components. T is a positive definite quadratic form with constant
mjk = mkj' Ve assume that F is positive definite to ensure only dissi-
pation and take constant cjk = ckj' Since the equilibrium configuration

is stable, V is also positive definite and uwe take cjk = ckj (constant).

Lagrange”s equations

E%'E%Z - 3%$ + 3%; + 3§¥ = £() . j=1, .n (1.22)
3 3 ]

tuus provide the equations of notion from which response prediction are
obtained. Ve can now discuss how uncertainty enters system specifica-

tion in a significant manner.

First, observe that in a deformable structure (system) we require
an infinity of coordinates to specify the configuration. Our choice of
coordinates Gys wees G where n is finite, immediately points up the
fact that we do not have enough coordinates to specify the configuration
of the system exactly even though we know the organization of the system
in terms of members, joints, masses, etc. However, it is reasonable to
assume we can select a set of Qps eees qn that will serve for our
specific purpose, as is done in finite element modeling. Thus, we shall
disregard uncertainty in system specification due to coordinate choice

in vhat follows.

Next, consider V. The kjk (stiffness coefficients) will be calcu-
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o lated from geometry and material behavior employing one of the standard
o,
nethodology. Lven if considerable effort (say, by finite element tech-
! niques) is expended in computation of these kjk within the frame work of
the selected Qps eeer G0 the influence of joint behavior, for example,
“
e .
% on the value of the kjk can never be estimated exactly. Further,
changes in joint friction due to corrosion will cause joint behavior to
h!
me slowly change with time. Since joint behavior, which determines end-
o conditions for the relevant members, frequently has a profound influence
ne
on member stiffness, uncertainty in joint behavior will produce uncer-
“
A tain kjk' Further, structural members may rupture due to aging or may
. be partially inoperative due to assembly and/or manufacturing errors and
ii reain undetected. No matter how hard we try to accurately esti-nate, at
3 least sone of the k,, will actually have values different fron what we
1Y jk
' estinate.
i The entire area of passive dissipation mechanics is at best on an
N insecure foundation. Illathematical convenience has dictated the form of
DS F in (1.21) [seeRay];ito be specific, the form assumed produces linear

dissipative terms in the equations of motion. Mathematical convenience
is an important point; however, experimental evidence is required (and
we are not awvare of it) to demonstrate that viscous damping does produce

physically accurate response over the entire frequency range.

ta &5 A

Given the form if F in (1.21), there are, in general, no reliable

techniques for calculating the cjk in a rational manner. In the ahsence

of large concentrated dissipators (dampers), it is usual practice either

to assume the c,, values are roughly proportional to the k., and/or the

jk ik

PR R

mjk’ where the proportionality constant is adjusted to produce dissipa-

tion in the first mode of motion equal to that observed in similar

R =< s
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structures, or to assume the cjk are wore less constant in value over
the structure with a multiplicative constant adjusted as in the previous

case., The c,, arising from concentrated dampers can be estimated over a

jk
frequency interval from test results; however, accuracy in the estimates
is usually not greater than *50%Z. 1In all events, we will rarely have
accuracy in the cjk values even comparable to that obtained for the kjk'
We can calculate or weigh the elements with as great an accuracy as
required. Thus, the physical elements that enter into the computation
of T have accurately estimated wmasses. Given our choice of the
U» ooes Qs there are a number of nethods for calculating the mjk
["constant nass matrices'"]. Accuracy in the val.es of the mjk is obvi-
ously not going to be a problem for a time invariant systeit vr for a
systenm in which the total mass changes slowly in a kinoun nanper.
Although we recognize that the live load in a building or bridge nay not

be known precisely, we shall assume on occasion in this report that the

m., Are accurately known..
J

We conclude from the discussion up to this point that uncertainties

will exist in the cjk and kjk values, with the former being larger than
in the latter. Return to the first question -
"do situations exist where it is not possible to
specify a system parameters exactly ...?"
The answer is obviously "yes" and we have indicated a few of the possi-

bilities.

\le now come to the second question -
"does it make any difference to the engineer (in
response prediction) if he does not have accurate

system specification?"
A few preliminary analytical details will provide a framework with which

to motivate the answer.

Let us first write out (1.22) employing (1.21) assuming the SIEERERT
‘ n

RN mmmmm\ﬂ
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have been selected so that the known (assune the njk

kinetic energy has the form

+ + k
5t Tt Ry

Landil o =
0 e

L
2

=f , '=1,
J.(t) j

Next, introduce the (nxn) matrices

and the (uxl) coluun vector

Then e can write (1.24) as

1
ey > 1= 1
0
£y
[ f = - L]
fﬂ

Iq + Kq + Kq = f ,

1

where 1 is the (nxn) unit matrix.

are not uncertain)

(1.23)

cey D . (1.24)

b (1.25)

(1.26)

(1.27)

Let us now put the second order system in the first order form:

X
by employing the substitutions
0 I
A= K ~C y X

PR T O oyl N O W -
t‘?'u")v*‘a'!.nl'-‘-"“«, ""ﬂf‘-"ﬁ-.‘;o!'.l'!!b!lu. tl,'.i, T N ‘.‘0 L

(1.28)

(1.29)
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" where A is a (2nx2n) wmatrix and x and f are (2nxl) column vectors. We
e =3 note that (1.28),when written out, consists of 2n first order equations
! !! whereas (1.27) consists of n second order equations. The nice feature of
B (1.28) is that we can immediately write down its solution; if at t = 0, |
.o~
Do x = x_, then,
~ o |
|
|
by, - t -
;ﬁ x = eA(t o)xo + ALt T)f(T)d't , t >0 (1.30)
o
) N We also can take the Laplace transform of (1.28) obtaining
‘-
h N
N X(s) = {Is - A} 'F(s) (1.31)
e
W - where T is the (2nx2n) unit matrix
[
‘.l ':
§ i X(s) = L[x(t)] , F(s) = L[£(1)]
b "y and we must add the initial condition X, at t = 0. We can now indicate,
< ;i erploying  (1.30) and (1.31), how uncertainties in the values of cjk and kjk’
b
i i.e. in ¢ and K, can change the response significantly.
2 e conclude from (1.31) that the eigenvalues of A will determine the
)
:s. g stability of the systen, since
"
N ! _ b _ cof {Is-—A}T
- (Is = A} * = —qgoar (1.32)

(where "T" denotes transpose), which shows that the eigenvalues of A, as

LARE

determined by

853

l1,s - Al =0, (1.33)

provide poles of the Laplace transform of x(t). If we do not know the

> e e
Folpaid
=S

elenents of the (2nx2n) matrix A precisely, we cannot unequivocally

state the eigenvalues of A are in the left-half complex s-plane. Even

e
A AP AR
a2

if we know the eigenvalues of A are in the left-half s-plane, but we do

not know their precise location, then if we add a control system for the

XX

22
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purposes of controlling our original system orientation we have the pos-
sibility that the complete system might at the worst be unstahbhle or have
very poor control characteristics, or at best have excellent control
characteristics. The uncertainty of how the system would behave cannot
be tolerated in space where adjustment and/or repair would be difficult. b.
Suppose the cigenvalues of A are in the left-half s-plane s¢ we

know the system is at least stable and suppose the external forces fl !
contain periodic elements, Then, the possibility of resonance
phenomenon comes up. lotice first uncertainties in the elenents kjk of
K means we are not certain where the undarped natural frecquencies of the
system lie; thus, we cannot be certain that some of the si-ple harnonic !
coinponents in the periodic disturbances will have frequencies well
separated from the undarped natural frequencies of the system. Second, )
uncertainties in the elements Cjk of the matrix C means that we cannot '
be certain that the forced amplitudes of the system response will be
snnall if the frequencies of the simple harmonic components in the exter-

| nal forces (disturbances) happen to be close to one or :ore of the
undamped natural frequencies of the system. If either of these situa-
tions occur, some of the components in x of (1.30) will be large leading

ultinately to fatigue failures. Examples of past cases where these pos-—

sihbilities huve occurred and caused problems readily come to mind.

We also have given specific examples in the General Introduction

where uncertainties in parameter values make a difference between what
R is predicted to occur, ignoring these uncertainties, and what actually Y

occurs. Thus, the answer to the second question is yes! )
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hﬂ In the sections devoted to time invariant parameters, our concern is to
describe how uncertainty in the parameters influences response and what techniques

! are currently available to quantitatively assess this influence. We shall divide
our discussion into subsections that reflect different interests and methodologies.

PN The two main areas of interest are derived from problems of physics and problems of

engineering. We shall start with engineering.

:5 The most important topic for engineering systems is how uncertain parameter
w!

values influence the accuracy of system response prediction. It often suffices

FS to know how these uncertainties influence the accuracy in estimating the values
b
L of the natural frequencies and their corresponding normal modes of motion in a
- conservative system (C=0). Since linear systems response prediction depends
LK)
e upon frequencv response or impulsive admittance (i.e. Green's function, impulse
function), our interest centers on:

W

natural frequencies

normal modes
;: frequency response

impulse response .

In some situations we will be directly interested in the response q.

It is important to note that there are two ways to quantitatively characterize

R
B _.l_'

uncertainty in the parameters. We may simply have bounds on the parameter values.
Alternatively, we may consider the parameters as random variables, described by

their joint probability distributions, or, at least, by their first two moments.

|

We shall treat both of these characterizations, since each can arise in application.

The broad classes of techniques available to pursue these subjects are:

| RN

perturbation methods

Liouville's equation

(3L

mean-square approximate systems.

bound determination.

We shall discuss each of these techniques separately, realizing that there

will be overlap.

<3 B3R
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II. Moments - White Noise Coefficient Case

=20

In this section we shall be concerned with the case that the coefficients

of linear differential equations, contain white noise components. In particular,

we are concerned with Gaussian white noise coefficients. The white noise

o

{wt, t&[0,»]}, is characterized by the fact that its power spectral density is

1 4

constant over the entire frequency domain (-=,»). Therefore, by the Fourier

transform relation between power spectral densities, f(w), and covariance

Vo |

functions, y(r), it follows that the covariance for the white noise is an impulse

function. Thus for the white noise, fw(w) = So’ and its Fourier transform

EE (the covariance) is yv(1) = ZnSOG(T). It immediately follows from Yw(r), that
W(t),W(t+ 1) are uncorrelated random variables, no matter how small 1. Further-

E: more since formally, we must have E{wz(t)}= 2w306(0) which is undefined, we see

- that the white noise would possess infinite power, making it a mathematical

- concept rather than the model of a process that is observed in nature. Moreover,

‘. if we assume that W(t) is a Gaussian random variable, then it follows that Ww(t),

W(t+ 1) are not only uncorrelated, they are, indeed, independent random variables.

[

.

The question that comes up is, how do we interpret the meaning of differential

equation models of real systems, with Gaussian white noise coefficients? It was

.

the classic work of K. Ito [2.1], in the 1940's that answered this question, long

before it was of importance to modern optimization and control applications.

2

Although a thorough development of these ideas is beyond the scope of this

AN

report, we shall illustrate a few of the basic ideas. The interested reader

should consult texts such as [2.2], [2.3) for the fundamental development. The

key point is that the Gaussian white noise, W(t), possesses a representation via

§ the Brownian motion process {B(t), t g[0,=]}.
An especially readable account of the interpretation can be found in [2.4]
y Vol. II , as well as the recent book on parametric excitation bv Ibrahim [2.51.

3

The Brownian Motion is discussed in almost all elementarv tests

on stochastic processes.

]

» For O<tl <t2...<ﬁ1, for any {ti} and n, the joint density is

X T 775
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The Brownian Motion process, also referred to as the Wiener process after
Eg Norbert Wiener who first made a thorough study of the properties in 1923 [2.6],
and 1930 (2.7], is defined by the class of Gaussian joint probability densities
. (2.1). The Brownian Motion process is a Gaussian process with stationary,
e independent increments satisfying,

P{B(0)=0}=1, E{B(t)}=0, E{B(s)B(t)}='YB(s,t)=(32min(s,t) (2.2)

L,La&}

Among Wiener's fundamental contributions to the development of this process,

was to determine that the sample functions of the process are continuous

"

functions on any finite interval, and that the sample functions are nowhere

differentiable.

L i
«'e%

-
~

v

Now from (2.2), we see from the covariance, that the Brownian Motion is

non-stationary. Furthermore, from elementary properties of derivatives of

=B

processes, it follows that the covariance of B(t), is given as

g

2
3 YB(S.t)
983t

This result is immedjately obtained formally, from

Py (s, L2

1 |
Asat = x5t EiB(s)B(t):

E:B(s)B(t)} .

L. "t '- :
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Upon taking these derivatives of YB(s,t) given in (2.2), we also obtain the

formal relation,

——SESE———'= o 8(t-s) = Yw(t—s) .

Thus, we obtain the representation for the Gaussian white noise as,
B(t) = W(t).

Therefore, for systems with Gaussian white noise coefficients, we can replace

the white noise terms with the formally differentiated Browmian motions.

We write the general linear differential equation with white noise

coefficients as,

K
x(t) =cx(t) + ) HW_(t)x ()
i=3 1

where the nxn matrices G,{Hi} are known, and the {Wi(t)}i are independent

=1

(2.3)

(2.4)

(2.5)

white noise coefficients, and x is an n-vector. However, since we can represent

wi(t)==ﬁi(t), then (2.5) may be rewritten as,

K ..
x(t) =Gx(t) + ] HlBi(t)x (t)
i=1

As we stated above, ﬁi(t) is only a formal derivative, since as a result of

(2.6)

Wiener's investigations, the Browmian motion does not possess derivatives. The
g

approach of K. Ito, was to interpret (2.6) as an equation in differentials,

K
dx (t) = Gx (t)dt + ) HldBi(t) x (t)
i=1

The meaning of this equation is via the integral equation,

t K

x(t)-x(a) = J Cx{s)ds + | f Hix(s)dBi(s),

a i=l ‘a

(2.7)

(2.8)
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where the Integral in (2.8) is the so-called Ito stochastic Integral and the

equation (2.7) is generally referred to in the literature as the Ito differential

equation.

Thus, upon starting with (2.5) as the formal differential equation
describing a system with white noise excitations, we are lead to the math-

ematically meaningful form (2.7).

The importance of this form lies in the many properties of the Brownian
motion differential coefficients dB(t). 1In particular, since the Brownian
motion process is a process with independent increments, then for each i,
dBi(s), dBi(t) are independent random variables for s # t. (We define the
differential, dB(t) = B(t+ dt)-B(t) for positive time differentials dt>0).
Also, as a result of this interpretation of the differential, it also follows,
that dBi(t) is independent of x(t) for every i. We can interpret this
formally as follows. Through the differential equality (2.7), x(t) is a
functional of {Bi(s), sst} for all i. However, since the Browulan motion is
an independent increment process, it follows that dBi(t)==Bi(t4-dt)—Bi(t) is
independent of all combinations (or functionals) of {Bi(s) sst}. This
independence is of fundamental significance. We can see the immediate effect
of this property, when we investigate the mean value E{x(t)}, for the solution

response to (2.7).
By taking expectations directly on (2.7) we obtain,
K
dE{x(t)}=G E{x(t)}dt + ) H E{dB_(t)x(t)]. (2.9)
i=1

Due to the independence of x(t) and the dBi(t), we can write using the fact
that E{dB(t)}=0.

E{dBi(t)x(t)}=E{dBi(t)} E{x(t)}=0 . (2.10)

Therefore, we immediately see that the mean equation from (2.9), (2.10) is

d
EE{x(t)}=G E{x(t)}, (2.11)

which is immediately solvable as a linear vector equation with constant

coefficients.
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Because of these properties, all moment statistics of the solution
process to (2.7) may be obtained. Perhaps, the most important result of the
properties of the Brownian motion, and the form of the Ito differential
equation, is that the solution process {x(t), tE[to,“’)}, is a vector Markov
process. See {2.3] and [2.12] for discussion of this deeply significant fact

Moreover, it was the motivation to represent a Markov process explicitly

that lead K. Ito to study the differential equations that bear his name.

The important tool by which we can set up the various moment equations
is the so-called generator or backward operator for the Markov solution
process of (2.7). We will obtain this generator via the characteristic
functional, an approach that appeared in an important early article by
Moyal [2.8] and is attributed to the statistician M.S. Bartlett. This

approach will be used to obtain the Liouville equation in our review of the

random constant coefficient case, following the approach in [2.9]. These ideas were

also applied in a fundamental paper on statistical turbulence theory by
E. Hopf [2.10] and later by the physicist S.F. Edwards 2.1

To illustrate these ideas, we write the development for the scalar case.

The n-th order operators can then be written down immediately. For the simple,

scalar Ito equation (general linear or non-linear) we write,
dxt = g(xt) dt+h(xt) dBt'
We are interested in the characterstic functional

5 (£0) = (™™ (e)y

Upon taking the differential with respect to t of (2.13), we will obtain, upon

a formal interchange of expectation and differential operators -

iux(t)}

dtOX(t,u) E{dte

iux(t)}

E{ [1ud x(t) +% (iudx(t))Z + o(dt)] e

iuE{dx(t) eiux(t)] +% (j_\.l)z Ef {dx (t))2 eiux(t)}

+ o(dt).

e A o e e
R N LNt A A

o

- " e

(2.12)

(2.13)

(2.14)
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Here, we have taken the first two terms in the expansion since, as we shall see
from (2.13) there will be a contribution from the second order term. Higher
order terms (dx(t))k, k>2 will all be o(At), and thus will not yield a

contribution.

From (2.13), we have

4.0 (Eow) = tu E{{g(x(t)dt + h(x(t))dB()] Lux(t),
(2.15)
+1 (1w’ E([ (g(x(t))dt)? + 2g(x(t) Yh(x(t)dtdB(t)
+n2(x(r)) (@B(e)?] 19X(E)y
+ o (dt)
Now, since dB(t) is independent of any function of x(t), as discussed above,
we have from (2.2), for any f(x(t)),
E{dB(t) f(x(t))} = E{dB(t)} E{f(x(t)} =0
(2.16)
E((dB(t))? E(x(t)} = BL(dB(t))2} E{E(x(t)} = o2dtE{f(x(t)}
Therefore, we can write (2.15) as,
a b (t,0) = iu E{g(x(£)) eux(t)y g
+ %;'(iu)z E(h?(x(t)) ()} 4 (2.17)
+ o {(dt)
Finally, we obtain upon dividing by dt, and letting dt:O0,
va(t,u) g2 2 .2 iux (t)
——— =E{[{ug(x(£)) +5 ({u)” h"(x(£))] e ) (2.18)

t
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We must now recall the elementary fact that

Q0

:x(t,u) = f eiu p(x,t) dx,

-

that is the characteristic function,and the corresponding probability density

function are Fourier transform pairs.

Upon taking inverse transforms of the equation (2.18), using the operator

Lo (k9K
identity (iu) = 2—K » (2.18) yields the partial differential equation for

RP'
P(x,t).
i 2 2.2
_'E%tt_tl - - ilzixlg;c(_x’t)l + 92_ 3" [h (XlP_z(.X’t)] . (2.19)

9X

We recognize this equation 1s the Fokker-Planck equation that has been so

important in the study of Markov diffusion processes.

The operator

K4 z-i[%éx)'] +92_3—[£—(22‘)'] (2.20)
b ¢ ax

is referred to as the Forward operator in the literature. See [2.12] as well

as other sources.

The adjoint operator

2 2
QX 2 5(x) 3—3}; + nle) (2.21)

2 3%

is referred to as the generator of the process defined by the Ito differential

equation (2.12).

The generator is the most important operator for diffusion processes
since it always exists. It is known that the forward operator may not exist

for certain Markov processes. This is an advanced concept which is usually

discussed in fundamental studies of diffusion processes [3ee e.g. [2.13]].
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It is the generator that is of interest to us. It is easily seen that
for any f(x), from (2.19), since we may write,
4 © © \ ( t) '
I E{f(x(t))} * 3 J f(x)p(x,t) dx=J f(x) —P—-;‘——t’ dx,

-00 00

we obtain the equation for the mean value of f(x(t),

It E{f(x(t))} = ELZf(x(t))} . (2.22)

The equality (2.22) is a simplified form of what is referred to in the
literature as Dynkin's theorem, [see [2.13], [2.14]]. The apparent

first application of these ideas to structural systems was presented in [2.15],
where stability of the second moments of the linear oscillator with white noise

coefficients was studied.

Considering only the moments mk(t)==E{xk(t)}, we have from (2.21), (2.22),

d

2
£ l‘L“—gl—E— E(h% (x (£ <72 (e) (2.23)

mk(t)= kE{g(x(t)xk-l(t)}+

It is clear that this equation cannot be solved for arbitrary functions
g(x),h(x). But, to our good fortune the linear case is completely determined
by (2.23). Thus, for the linear form of (2.12) where g(x) = ax, h(x) =bx, the

moment equation (2.23) becomes

(k-2)

2
Lm0 = elax (0x F D 03+ BED g2 2 (6 07D (1)

which the reader can easily put into the form,

k(k-1)
2

PTS mk(t)= [ka + szzl mk(t). (2.24)

which vields,

[ka +

« i k(g-l) dzbz]t
E () = mk(t) = mk(O)e

th
for the k moments.

» -_- - -.. . -, = v .
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In fact for any nth order linear Ito equation we obtain a consistent set y

of equations for the kth moments that can be solved exactly. We see this by
first presenting the generator (backward operator), for the general linear t
nth order Ito equation (2.7 ). It is obtained directly as

L7 Joap2 +:F b % (2.25) -
= ( g X o + -~ X N a . ‘.'-
RS Rt I I T e R LS -
D ol ;
where b (x) = o h h x X, Pt
=1 r,s=1 irjsr t‘
f}
2 oy
2 = 3} = M

S dt E{(de(t)) }, and H (hij)
7
We note that, exactly as for the first order, scalar, example above, '
the coefficient of the —ai— term is linear in X, and the coefficient of the '.::‘
i ¢
.2
32 L
——— term is quadratic in Xx. 4
X, X )
i3 N
Hence, there will always be a closed set of equations to solve for the )
kth moments. . G
by

In fact, we immediately have for the expectation of the general function

)

E(x (), 5% (€)), !;
EdE E{f(xl(t),...,xn(t))}=E{Qf(xl(c),...,xn(c))} , (2.26) :§:

:‘cﬁ

similarly to (2.22). ‘ ::

We look at the classic example, apparently, first studied in [2.15].

o
This is the second order linear oscillator, with a white noise coefficient, !
3
A
.. g
x(t)+"mx(t) + (w +W(t))x(t) =0 (2.27) %
r
Putting 72.27, into a linear Ito form, we set x1=x, xz':; and noting ¥
that dB(t) = W(t)dt, as in (2. 7), the second order oscillator equation becomes i
<
£
dxl = xzdt t:
(2.28) ‘N
, ‘
dx2 = ‘(2:;)(2 + . xl)dt - %y dB(t) z
,
. e e e oA ‘_. ~ '-J\ -p Yol

. . ) N 'p
W AR » By " L CS
V"’,::"’.O- ?ﬂ‘? " ",.‘f".‘g’t""‘&:‘&.‘!‘q"h' N %l!‘.'l."h‘. ‘.h Wy ‘.’x' 'o‘“o‘h M 'y"\r\r -‘f .t."v A5 W \ LA )



RETILTT LT VIR T e - morEmTwrTgITEv  Zw gw s gL Ty Wt R eT e R wewY WTTTTTTY Cadh e o ns o) - vy

a ~-30-

-

% 23 The generator of the (xl,xz) diffusion process can immediately be written
v §J as
ﬁ 2 2
2 ! g= X, 3—ax —(2cwx2+w2x ) i +9-— xi’ Ta— . (2.29)
" 1 X2 4- ‘Xz
.’\“ 2
& 'F — = R
: 2 For the three moments m21(t)-E{xl(t)}, mlz(t) E{xl(t)xz(t),,
[ ] m22(t)==E{x§(t)}, the relation (2.26), for Segiven by (2.29) yields the ejquations,
p %
N .Y
)
5
\ j mll(t) 0 2 0 mll(t)
2
d _ 2
ac mlz(t) w 2Cw 1 mlz(t)
LN -
N 2 2
i' - m22(t) g 2w 4nw méz(t) , (2.30)
\.:‘
’ ; which can be solved explicitly.
a . For the general nth order system (2.7), one can easily show that the second
W
33 moment s E{xu(t)xv(t)} = muv(t), can be expressed as the solutions of the

differential equations

. n
L m () =1 lgm () +g m, ()] +
') ‘_'o J l

--}
L, K n I

2
P a2l h ho om__(t) (2.31)
i M = r,s,=1
fs "
e
‘4 ii where u,v=1,2,...,n
LY 3
' Here, we have used (2.25) directly.
Y

RS Finally, we shall mention a generalization of the 2nd moment formula
‘: (2.31) that holds for all pth order moments, [2.16], [2.17] for the linear
; :: Ito equation (2.7).

[ ]
a Motivated by the algebraic theorv of linear differential equations,
' .‘
" :3 one can define for a given n-vector x and a given positive integer p, the

o

(p]

associated vector x whose components are

-

K .

A o I L S T O -. . ~ .- R T U A IR S VI s TR A
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e~

)

p-pl

ez
s

<R
o
-
o
N

s

for

gg Z p; =

P, p; 20
i=1 i

{pl

The components of x

[3]

n=p=3, the components of x , for

Ll
oY
*1
ﬁ X = x2 are, in order,
X3
3
¢ 1— 3 1
X
.. 1
x _
! %i Y3 x 3
’ .
' V6
! (31 _|"° *1%2%3
i x =
\ ~ 2
) 3 x,x
¢ ﬁ: 13
- o
r 2
b 3 %%
\ 2
b /3 %
< 3
L 5
5
! .

~

S

!

e ad '.:)\-J'f

L

-

are ordered lexicographically.

X e X
n
P (2.321

For example, for

(2.33)

e A et e A . - . TR b At
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o4

[P} atisties | x[p]|l = || x||P, where ||x ”2 = (x,x) and

more generally, (x,y)p = (x[p],y[p]). Furthermore, this concept extends to
matrices through the definition y = Ax. One defines A[p], as that matrix that
yields

The vector x

P
Ay

R

SLIE
b ol

y[p] ~alpl lpl (2.34)

For 'inear systems

e |

=A

x(t) = A(t)x(t) (2.35)
ﬂa the differential equality
. x(t+h) = (I +hA(t))x(t) + 0(h?)

holds, yielding from the definition (2.34)

LA I o
.‘I -

<P (tan) = 1+ nae)) PIlPleey v om?y (2.36)
Upon defining the limit

.1 (p1_ ;[p] (t)
N lim + ((T+ha(e)) PIo 1'Plyy = plE)
hvo P [p]

» we now determine the associated differential equation for x[p],

)
- Py =acey xPleey . (2.37)
[p]

vy

In order to relate these ideas back to the original Ito equation 2.7y,

{R one can apply the usual Ito calculus [2.12] to obtain the Ito differential
Pl equation for x[p] as
-

e

P
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[p] - _1F 2 £ 2 (p]
d x'Plp) G -3 §=1Hr ol rg He ] (t)dt
K [p]
+ §=1 Hr[p]x (t) dBr(t) . (2.38)

Applying expectations to the Equation (2.38) immediately yields the

linear differential equation for the pth order moments as

K K
d 1 2
LePlen -|fe-2 [ w + Z Hr[p] e(x®l(e))

(p]
- A exPlenyy . (2.39)

The result (2.39), can also be obtained directly from application of
(2.2°) for ¥ given by (2.25).

Although, in principle, the equations for the pth moments for linear
homogeneous Ito differential equations have been known for many years, the

general form (2.39) can be quite useful.
These ideas extend quite simply to the non-homogeneous case as well.

We mention that the results (2.32)-(2.39), have been derived from algebraic
considerations and more particularly by consideration of the Lie algebras

[see [2.16]] generated by the matrices (G, Hy, HyyoooHp).

Finally, it should be noted that there is no conceptual or analytic
difficulty to obtain the moments for the linear system with external forcing

functions. The general linear Ito equation (2.7) would become,

K
dx(t) = Gx(t)dt + | uldB, ((£)x(€) + Fav(e),
i=1
where F is a constant nxm matrix, the vector V is an m-vector of Brownian
motions that are independent of the {Bi(t)}, and are independent among their

components.
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For this case, the generator for (2.40) would be jZ; +£Z;, where 5? is
x
given by (2.25) and

15 32
QF 2 12-- 43 Ixox. °
»3=1 h|

m
where Oij = %:1 fizfjl ’

and anm = (fij)'

The equation (2.40) is a non-homogeneous equation. The associated moment
equations that are derived from the addition of 52; given by (2.41) tojz; given
by (2.25) would also generate a set of non-homogeneous linear equations. Finally,
we wish to comment on the probability densities for (2.7). We know that the
probability densities for the solutions to Ito differential equations are the
solutions to the Fokker-Planck equations, given by

*
—%¥-=ﬁ? p, where (2.42)

*
S? is the adjoint of the generator

Thus, for example, for the general linear equation, the adjoint ofiz;

given by (2.25) is

* n . n 32[b,. (x)°]
¢ =_Z——[Zg1u3 bely H—- (2.43)
X X 2 . IXIX,
i=1 1 i,j=1 j
For the simnle scalar equation
2 2
dx(t) = Bx(t)dt + xdB(t), E{(dB(t))"} = o"dt, (2.44)
R e e S L A g e o e e
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::: whose Fokker-Planck equation is
2
Gt |, 3G, of 3% Ix’p(x,0)
! at 9x 2 L2 ’
- dx
b we can obtain the probability density explicitly as,
i
1 2 2
- 1 _ [log x -(8 - 3 o2)t]l /26"t
3 P(x,t) = ———— e (2.45)
0 /2mt  ox
a; Unfortunately, for higher order linear systems, one cannot, in general,
solve for the probability densities. In certain cases, however, the stationary
A
Q& density as the solution of
*
0= gx p(x) (2.46)

ks can be obtained.
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ITI. Approximately White Noise Coefficients

~
N As we discussed in II, a white noise is distinguished by the fact
that its spectral density is constant over the entire frequency domain (-, «).
s Although the white noise itself is a mathematical abstraction, not
“ present in nature, there are real or 'physical' noise processes that are wide

- band. These processes may possess power spectral densities that are essentially
flat over a broad frequency range and then exhibit a rapid drop-off to neglible

. frequency content.

It has been a common procedure throughout the development of stochastic
methods to deal with problems of random excitations to replace such wide band

processes with White noise.

-
jg In the case that the wide band gaussian physical noise, n(t), is an
external excitation, such as in the simple oscillator,
)
®(t) + 2zwx(t) + w?x(t) =n(t), (3.1)
the typical procedure, over the years, has been to replace n(t) by W(t)
'i (gaussian white noise) and proceed with the analysis to obtain the solution
process, moments, probability densities, etc. (In this linear case, (x, i)
.;: will be gaussian random variables for gaussian excitations).
- For external excitations this procedure can be justified. Difficulties
ll occured when researchers in random vibrations attempted to make the same type
s of replacements for wide band random coefficients. In the random coefficient
- case, the replacement cannot be simply made. A deeper analysis is required.
:ﬁ For the early discussions and ultimate clarification of these questions, the
- reader is ceferred to [3.1], [3.2], [3.3], ([3.4], [3.5].
:ﬁ The basic problem can be illustrated via the first order differential
.. equation.
-
[

x(t) + n(t) x(t)=0. (3.2)

.. AT A ta et e e L .- e s
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I ﬁi
v
R For any "physical" noise n(t), whose sample functions are well behaved
;; in the sense that they are at the very least piecewise continuous, the solution
Al -
‘ may be represented as, .
: -{ n(s)ds
4
: N x(t)=x e ° . (3.3)
e
A G
?'I
. where x(0) =
%i . The natural question that occurs is as follows:
N
SO "If n(t) is a wide band gaussian process and we replace n(t) by
A Sy
b the gaussian white noise W(t) in (3.2), will the solution be given by (3.3)
o where n(s) is replaced by W(s) in the integral?"
LY
‘: e This 1s exactly what was done in the early 1960's in order to study
ﬁ i: oscillators with white noise coefficients. This would allow us to write (3.3)
{
B -
‘ - as (t ¢
? -J W(s)ds -j dB(s)
AR _ ) _ ) _ -B(t)
A :{ x(t) = x e x e x e , (3.4)
‘ L
‘o i from the representation (2.4) of the gaussian white noise in terms of the
o Browmian motion. We would have to verify that the sample solution (3.4) satisfies
K . the original equation
o
x(t) + W(t) x(t) =0,
& !.
& or in the proper Ito differential form
e
oS
A dx(t) + x(t)dB(t) =0 (3.5
-
“ :,,'&
. » (again identifying W(t)dt = dB(t)).
(LY
'; ;{ This is simply obtained by taking the differential of the solution in (3.4),
% 8]
= X e—B(t)
o .
v
o .; But, differentials of functions of Browmian motlon possess a somewhat
f: different form than differentials of the ordinary calculus.
§ &
[}

PR T R
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25

This was, in fact, a major point in the development of Ito's stochastic

Pl o

" differential equations [see eq. [3.6], [3.7]]. Essentially, since
’ E{(B(t + At) -B(t)2}= o%At, for any At>o, it is known, on a sample property basis

p that (B(t +At) —B(t))2 : 0%At with probability one. Therefore, upon taking

a Taylor expansion

-

o

2
dF(B(t)) = F'(B(t)dB(t) + F"(B(t)) Ld%!(_ﬂ
'yl r- n
~ #o+ F W gy LD, (3.6)
o ]
s

1

we must keep the (dB(t))2 o2dt term, all higher order terms (dB(t))k = o(dt)

for k>2.

This leads to the differential formula,

P e B A,

2
dF(B(t)) = F'(B(t))dB(t) + g— F"(B(t))dt, (3.7)

which is referred to in the literature as the Ito differential formula.
” This is the proper relation that must be used to study the calculus of stochastic
. differential equations with gaussian white noise coefficients. For more general

functions F(B(t),t), one can show that

2
= g
dF(B(t),t) = F dt+F dB+ F.dt . (3.7a)
P
: Upon application of the formula (3.7) to the function (3.4), we find that
-
\ _é 2
- -B(t), _ __ _-B(t) o ~-B(t)
d(xoe ) = X e dB(t) + 5 Xe dt,
A
<! .
N e or, equivalently,
' ‘
(.
> 62
X dx(t) + x(t)dB(t) - S x(t)dt = 0 (3.8)

2
But (3.8) differs from (3.5), with the addition of the term - % x(t)dt.

N M A Wl Lo o b St Ve D TS
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F""""""""""""'“"""""'""""'”‘"""'“""""‘”'““"'"“""""""‘"“""""""""""T
ﬁ -39-

o Thus, simply by replacing n(s) with W(s) in (3.3) does not yield the proper
solution to (3.2) with n(t) replaced by W(t).
! _J’t n(s)ds
) Thus, x e o is the solution to an equation that differs from the
"o t
:: _J W(s)ds
equation for which x e o is a solution. Yet, for the vrdinary deter-
. ministic calculus, the equation would be the same. Thus, we must look further
N at how to study the wide band coefficient case by replacement with white noise
P coefficients. It appears from our simple example that the equation would have
fS to be modified to yield the same analytical results.
. We can show, simply, how the equation must be modified. Consider the
i: scalar equation,

dx(t) = £(x(t))dt + g(x(t))dy(t), (3.9)

a
._)‘7, ¢

dy(t)

where —%E—— exists as a physical noise process.

We assume that we can write the solution as

x(t) = F(y(t),t) (3.10)
? Thus, we would find
~ dx(t) = F_(y(£),t)dt + F (y(£),6)dy(t) (3.11)
R
- Therefore, we must have by identifying terms in (3.9), (3.11).
-
- Ft(}’(t),t) = f(F(y(t),t))
3 F_(y(t),t) = g(F(y(t),t)). (3.12)
w2 y .
f; Now suppose we replace y(t) by B(t) in (3.12),we set a new x(t) equal to,
J ii x(t) = F(B(t),t) . (3.13)
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2

Upon applying the Ito differential formula, (3.7a) we will have

[N hNed

s

. 2
!. dx(t) = F_(B(t),t)dt + F(B(t),t)dB + %T Fpp(B(t),t)dt (3.14)
:: now FB(B(t),t) = g(F(B(t),t)),from (3.12). Therefore,
wt
.! FBB(B(C),t) = g' (F(B(t),t)) FB(B(C),C)

g'(F(B(t),t)) g(F(B(t),t)), (3.15)

again from (3.12).

- Upon realizing that (3.13) holds, then the substitutions of (3.12), (3.15)
into (3.14) will give us the equation

2
dx(t) = f£(x(t)dt + g(x(t))dB(t) + %T g' (x(£))g(x(t)dt (3.16)

We see, therefore, the change in the equations (3.9), (3.16) through the

i term
0%

' 5 8 (x(t)) g(x(t))dt. (3.17)
e

Therefore, it is just this term that must be added to the equation (3.9)
g when replacing the coefficient g%(t) by the Gaussian white noise W(t)(zg%é—tl)
3; The term (3.17) is a correction term and is usually referred to in the
hYs literature as the Wong-Zakai correction term.
< For the general n-dimensional vector differential equations, we will find
%: that
5,
L dx(t) = f(x(t),t) dt + G(x(t),t)dy(t), (3.18)
_: where x,f are n-vectors, y is an m-vector and G is an nxm matrix, will be
- replaced by the equations
4
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2 n m g, (x(t),t)
A (t) = |£,(x,(0),0) + &} T g (x(t),r) — dt
i i 2 k=1 =1 k2 Bxk
o ->
+ ] gy (x(£),t)dB (t) , icl,...,n (3.19)
2=1

The immediate question for us, is how will this change the linear
equations with random coefficients that are "almost" white noise. We have
already seen how the simple first order equation (3.2) is modified to obtain the

added term present in (3.8). Our interest, of course, is for higher order systems.

Thus, we can for example consider the case of the second order oscillator

dx1 = xzdt

=)

-(2zuwx +-w2x1)dt -'xldy (3.20)

2
which corresponds to

. . 2 .

x+ 2cux + (W"+y)x =0,

where ; is a physical noise coefficient.

Identifying terms in (3.18), (3.19) with the system (3.20), we see that

0 g11
G(x) = = (3.21)
I 81
}
|
Hence, the correction terms in (3.19) become 1
2 38 o , i=1
z g 1] _
K= kl 3xk
L o, i=2 . (3.22)
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Thus, there is no correction required. The associated Ito equation is

X+ 2wk + (W +B)x = 0

¢

Indeed for the second order oscillator, a correction term is required

only when there is a randomly fluctuating parameter in the damping term.

e
:: Indeed, for the nth order general linear system, there will be a correction
term required only when there is a random parameter appearing in the (n—lf
:{ derivative te-ms. No corrections will be required to the linear system equations
- when the randomly fluctuating coefficients appear in terms lower than the (n-l)th
.:: derivative. The follcwing example illustrates this property.
In exactly the same fashion as above, we can easily see that for the
:: system
>

- dxl = xzdt
- 2
. dx2 = —(25wx24-m xl)dt - x2dy (3.23)
.:\
)
corresponding to
| ) .
Xx + (2zu+y)x+wx =0,

:} the G matrix is given as
! 0 811

G(x) = = (3.24)
% “*2 821
Ef Hence, the correction terms become,
- N o , i=1
- S . 811
= / - =

k=1l KLy .
Xy i=2. (3.25)
A
7
Thus, the associated Ito equation becomes

N

dvl = xzdt
{“ 2 2
¢ = -(27. ‘.)b o = ’ *
. dx2 [=(2- x2+ xl)+ 5 x2]dt xldB (3.26)

) . .
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which corresponds to

2

X+ (2. -+ Blx + o= 0. (3.27)

Notice, that for the associated Ito equation the - %r x has a destabilizing

effect on the overall system.
Naturally, we easily see how these correction terms will appear for the
linear svstem. The important application is that of determining the approximate

moments for the specific system.

For the phyvsical noise coefficient system (3.20), we cannot determine the

various moments.
However, for the associated Ito system, with no correction terms, we have
the generator

3 o 3

= 2 (o 2 3 Lo 37
¥ - x (2cux, + %)) 5= + 5 5= (3.28)

1 2 2

from which we can obtain all moments, as in Section II.

Again for the physical noise coefficient system (3.23), we cannot obtain
the moments directly. However, the associated Ito system (3.26) possesses the

generator

P=x, = -1 CHVRE S AT L 3.29
=% N [(2ew- %) + wix] w, 2 32 (3.29)

from which all moments may be obtained.

Finally, it is immediately seen from (3.19) that the backward operator for

the system (3.19), which contains the correction terms is

@ n ;2 B rf 28, (x,t) N
= [f,(x,t) += L g (x,t) ———'] =
j=1 1 2 =1 2=1 k& ka .xi
12 %1 "2 (3.30)
+ 5 g, (x,t)g, (x,t) —_—
2 . L . D '; ')
i,j=1 [r,s=1 1F th Sl IR R

For a comprehensive study of the sample behavior of such physical noise co-

efficient linear systems and their associated Ito systems see [3.8].
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In closing, we mention that physical noise coefficient systems with small
parameters can also be related to associated Ito systems and their Markov process
solutions. These techniques are based upon so-called averaging methods, which
will be discussed in decail in Section V. We shall now turn to a more detailed

discussion of the physical noise coefficient case.
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Iv. Physical Noise Coefficient Systems

For the case of linear systems that cannot be in some way approximated by
differential equations with white noise coefficients or approximated by other

methods, there are very few specific results available.

This, of course, is due to the fact that differential equations with time
varying coefficients cannot, in general, be solved exactlv. Indeed, unless we
can solve the equations exactly, we cannot expect to obtain moments, nor
probability densities. This is the opposite of the white noise coefficient case,
where moments can be obtained exactly even though the differential equations

cannot be solved.

The question that we must first consider is, what types of ordinary dif-

ferential equations with time varying coefficients can we solve exactly.

The general equation of interest is
x(t) = A(t) x(t), (4.1)

where x is an n-vector, and A(t) is an nxn matrix which contains elements

that are randomly time varying.

For the first order case

x(t) = a(t) x(t), (4.2)
we can write the solution as t
[ a(s)ds
x(t) = x e ° (4.3)

whose moment properties may be obtained under certain conditioms.

This depends upon the assumptions we place upon the coefficient process

ta(t), t €[0,=)}.

It is a rather important-point that in general, given the statistical
properties of the a-process, (e.g. the joint probability densities) the

t
probability densities of the integrated process a(s)ds cannot be obtained.

(o]

ot

h ] 'y K
A.lf;.'! L'(A_T.L th A.(A.{\-&’A{" JA{ -':5‘):5'('? R '( g ¥
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L3
ii Thus, even for the first order physical noise coefficient differential equation,
we may not be able to obtain even its moments, exactly.
l The reason here is that we must evaluate
a t t
- a(s)ds [ a(s)ds
2 E(x"(t)} = E{x2e™° b= xEC . (4.4)

Without knowledge of the probability density for the integrated a-process, we

cannot explicitly evaluate these expectations.

]

o

:ﬁ Fortunately, there is a class of coefficient processes for which we can
determine the joint probabilities for the integrated process. This class is,

N~

ﬁi of course, the class of Gaussian processes. For the Gaussian processes we

o

know that any linear operation on the process will again yield a Gaussian process.
- This is the only general class for which we can make such a statement. Other
processes simply do not allow us to make such a complete statement. Hence, this
is another case in which the Gaussian assumption allows us to make a complete

. statement about the solution process.

If the a-process is zero mean Gaussian with covariance t§t1,t2), it

F &

t
immediately follows that the integral, J a(s)ds is also a zero mean Gaussian
o

N

process with covariance given as

e N

oo

t t . t t

[ 1 2 1 2
H 1 = 1
!! E {l a(s)ds J a(s)ds} = E {I dsl J ds2 a(sl)a(sz)J
iy ) o ) )
AL
o (tl ftz ‘
e = J, ds1 Jo d52 E{a(sl)a(sz)f
.'_;
e rtl ftZ
= /i
, | ds J ds, v,(s]s,) - (4.5)
jE ) o
. Thus, it follows that the integrated a-process is zero mean Gaussian with
> variance
e t t
2 26y = | ds, | ds, v_(s,s5,) (4.6)
| ‘ S1 | 982 Y3 51052 .
o o)
<
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and the desired expectations (4.4) can be obtained explicitly as

t
2 I a(s)ds
E{x“(t)} = xg E{eD -0 }
2
- ___%__
= x: e™” L _ e 207 (t) d
- V2no(t)
3 02(t)
= x: e’ , (4.7)
where o2 is given by (4.6).

For the non-Gaussian case one might consider an expansion of the

exponential, leading us to the result

t
t
J a(s)ds ) nk E{(J a(s)ds)k}
E{e” © =) 2 (4.8)
k!
k=0
Since the moments of the integrated a-process can be written as
t K t t
E{(| a(s)ds) } = ds, ... ds Ela(s,)...a(s, )}, (4.9)
o o 1 o k 1 k

then if the joint moments of the a-process are known, we can in principle
write (4.8) in a series form. However, summing the series would be a problem

of higher order of magnitude difficulty.

Thus, we see that only for the Gaussian assumption can we obtain explicit

results for even the simpflest first order physical noise coefficient system.

What can be said for higher order systems? The underlying difficulty
here is simply that the general solution to the nth order time varying system
(4.1) cannot be written in a closed form. One is tempted to write the solution

as the matrix exponential

t
j A(s)ds
x(t) = e’© Xy (4.10)
SN .,. \- '.-‘\"& AN SNL NG \-"‘r"‘v' ""-' 'W-"\'\- RN iy -~ \"-'\'\' Yo N
N % . ’m\_mhh&’\hAh\- .5.:4! .‘ix‘:‘a‘:‘&;.n‘:.l{& \l.\ A T
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However, as is well known (4.10) can be the solution of (4.1) only 1if

t
a condition such as the commutativity of the matrices A(t) and A(s)ds, holds.

(o}

Otherwise, we cannot represent the solution as (4.10). Of course this

does allow us to study systems satis{ying the equality
A(t) = a(t) Ao,

where a(t) is a scalar random process, and Ao is a constant matrix. In this

rt
case A(t) and J A(s)ds E(%o J a(s)ds)do commute, so that the solution of (4.
o o

with (4.11) is given by e
A0 Joa(s)ds
x(t) = e X, -
Thic is of course no different than in solving for the solution of the
constant coefficient matrix case. The main distinction being that the

t
characteristic values of the A0 matrix will pick up factors of a(s)ds. Ther
o

fore, if Ao, for example can be diagonalized by the matrix X, then we know

that

A

where 1 is the diagonal matrix of the characteristic values of Ao.

e (O
Xl J a(s)ds

t t o}
1

X Ao J a(s)ds X = A J a(s)ds =
(:::) .Xn j a(s)ds

(o] o]
o

Hence (4.13) vields

R B0 T I e T P ) ~-“ - Al
A L o g e e e e R e et

(4.11)

1)

(4.1

e—

(4.1

2)

3)

(4.14)
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which gives us the explicit solution

"t
A J a(s)ds
_ x—l o] X
x(t) = e X
“ O
A [ a(s)ds
e ' °
-x1t . X x (4.15)

It follows that if the a-process is Gaussian, then as in the first order
example, we can obtain all of the desired statistical properties of the solution

vector process x(t).

Can we say anything specific for more general noise coefficient linear

systems?

There is a class of linear random coefficient systems for which we can
find explicit solutions. 1In order to describe this class, we first appeal to

our usual first order case.

Let us consider the first order equation that generalizes (4.2), which

we may write as,

m
d;‘tﬂ = cx(t)+ (1 4, a (£)x(6) , (4.16)

i=1

where c, {di; are given constants and {ai(t)} are m-coefficient processes

which may or may not be correlated, may or may not be Gaussian, etc.

We can write the solution, with x(0) = Xy as

m et
ct+ .é diJ ai(s)ds
i=1 o

x(t) = X e . 4.17)
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Having this explicit solution, we can therefore obtain statistical properties as

t
desired depending upon whether the joint statistics of the integrals f ai(s)ds

can be obtained (such as in the Gaussian case). °

It immediately follows that if the matrices C, D D are nxn diagonal

10e 0D
matrices,
then, the vector equation
dx(t T
EO) - cxwy + 1] a0, x(e), (4.18)
; i i
i=1
mav be written as the n first-order equations
dx, (t) n
= ¢,x,(t) + [ d..,a.(t)]x.(t), j=1,2,...,n. 4.19
T 5% € IRTEHOINOR (4.19)

The solutions to (4.19) may be written as in the form of (4.17).

The next level of complexity will occur when the C, {Di} matrices are all

upper triangular. 1In this case, the solutions may be obtained sequentialivy.

Thus for




ﬁ -51-
“y
§2 we would have
.. dxn(t) m
. 3 = %, () + [Z_ d; a,(t)]x_(t)
:S i=1
ly
-2 dx_ ,(t) m
5 n-1 = n
ta a Cpo1¥pop (B) *+ ch_jx (£) + [lei(n-l)ai(t)l N OR.
2
A m
- wi_:ldin_lai(t)] x_(t)
Ve,
o
etc. (4.21)

)

Y
RS |

r
»

We see that there is a sequence of first order equations, all solvable.

The first equation is first order homogeneous, all others are first order non-

homogeneous. Again, if all the [ai(t)] are Gaussian processes, then the statistical

properties of the solution vector process x are completely determined.

2

ey
.

The next step in the generalization is to consider the case that the

matrices Q{Di} can all be transformed into upper triangular matrices. This would

allow us to reduce the problem to the form we have just considered. This problem
can be expressed in a concise form by means of Lie algebra theory, [4.1], [(4.2],

[4.3], [4.4].

<3

o

We briefly describe the fundamental ideas. A subspace L of nxn matrices

is called a Lie algebra if for all C, D in L, the commutator product [C,D] = CD-DC

(A |

also belongs to L. Let L(C,D ,Dm) denote the smallest Lie algebra containing

100
rg the matrices C, Dl""Dm' This is usually referred to as the Lie algebra generated
Qh by C, Dl""Dm' One defines the derived series of the algebra as follows.

A

-
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L™ = [L, L]

Ln+l - [Ln, Ln]

where [Lk,Lk ] denotes the set of all matrices formed by [Ck,Dk] = Cka—Dka,

where Ck, Dk e Lk.

The Lie algebra is said to be solvable if there is an integer N for
which LN = {0}. Clearly, an Abelian Lie algebra (where all matrices are pairwise
commutative) is a special case of a solvable Lie algebra, since C, D € L satisfies

[c, D] = {0}. Therefore, [L, L] = {0}.

How do these results impact upon our problem for random coefficient
systems? The connection with our discussions above is contained in the

following lemma. [4.5].

Lemma - A matrix Lie algebra, L, is solvable if,and only if, there exists a

non-singular matrix P such that PMP‘1 is upper triangular for any M €L.

Thus, we see that if the nxn matrices C, D ..,Dm generate. a solvable

1
Lie algebra, L, then the linear system

dx(t)
dt

m
= cx(t)+ [} a (t)D,] x(t), (4.22)
i=1

can be transformed by setting y=Px where P is guaranteed to exist by the lemma

to vield

Z m .
ddét) = PCP-l y(t) + [Z a.(t) PD,P-l] y(t)‘ ((..23)
i=1 * b

. ~° »
o (LSRN > >0 s B

LA NNERGS, W SN ",‘t-‘ ‘-\,._,,“f LR LR w "‘,.‘\" .:_\ B AN SN S N AT \$~,\ \‘
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in which each matrix PCP-l, PDlP—l,...,PD plig upper triangular. It follows

m
that the solution vector y(t) can be obtained explicitly by sequential
calculations. Finally the x-process is obtained by x(t)==P_ly(t).

Example [4.2]

Consider the second order system

dzé” [C+D, 2 (£) + Dya, (6)]x(t),
where
2 -1 10 1 -1
C = q ’Dl = . D2 = ’
1 0 10 0 0

and al(t), az(t) are Gaussian processes possibly correlated.

It is possible to show that the Lie algebra generated by (C, Dl’ Dz)
is solvable, with P = 0 1
1 -1
We immediately find
1 1 1 1 0 0
-1 -1 -1
PCP = 4 , PDP T = » PDPTT =
0 1 0 0 0 1
which gives us the transformed equation
n+a_ (t) t+a, (t)
dy(e) _ ' ' o)
dt - )
0 a+a,(t) (4.24)

R R S R S R R



o Clearly, (4.24) can be explicitly integrated, giving us the desired statistics

for the vector solution process x==P-1y.

! There is one point that must be made here concerning the Lie algebra
approach. Generally speaking, many of the linear equations that we study in

r: mechanical vibrations do not generate solvable Lie algebras.

-~

Thus, the classical oscillator equation yields

0 1 _1 0 0

b ] D = L]
1 1 0

B
(@)
]

-w? -2Lw_|

ErR

for a randomly varying stiffness coefficient,

ﬁ x(t) + ZQw;c(t) + [w2 + a(t)]x(t) = 0

Even in this simplest case therefore we cannot use the Lie algebra approach.
For general linear systems, one would have to test whether they generate solvable
algebras. This is not easy to accomplish, especially for structures with many

components. For further details one may see [4.5], [4.6].

w9

We shall finally consider what can be stated concerning bounds on the
second moment statistics from a Lyapunov function point of view. We shall follow
the derivation of Infante [4.7] [see [4.8], also]. TFor deterministic systems

this basic idea was first studied by Wintner [4.9].

R .

Towards this end, for the arbitrary nth order linear system

| 20y

Qigl = (A+F(t))x(t), (4.25)

 Forrs]

We define the quadratic form

=2

V(x) = x'Px, (4.26)

A A BRI
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where P is a positive definite symmetric matrix. Clearly if P is the identity,

then

veo = [l el = gx B2 (4.27)

We evaluate the derivative of (4.26) along the trajectories of (4.25),

thus obtaining,

L vex(e)) = x"(e) [@+Fe)TP+P@A+F(E)) Ix(E) (4.28)

Upon dividing by V(x(t)), we will obtain

1 AV(x(t)) _ x () [(A+F(£)) P +P(a+F(t))]x(t)
Vix(t) dt x(t) Px(t)

(4.29)

Clearly the quotient on the right hand side of (4.29) is quite complicated.
However, by the properties of pencils of quadratic forms [4.10], as well as the

min-max properties of eigenvalues, it is known that

' -1 x Dx -1
X by .
min(DP ) < T = max(DP ) (4.30)
x Px
where X , , ) are, respectively, the minimum and maximum eigenvalues
min max_ 21
of the matrix DP ~. Yote since P is positive definite, then P exists.

Furthermore, the operator associated with the matrix DP-l can be shown to be

symmetric [4.9], hence the eigenvalues of DP-1 must be real.

Upon applying the inequalities (4.30) to the equality (4.29), we find

that

1 dvix(t)) . (t), (4.31) j

AL (E) <

min — V(x(t)) dt — max
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where

(t) = A [(A+F(t))T + P(A+F(t))P 1],

A
min,max min,max

Upon integrating (4.31) and taking exponentials of each term, we have

t t
J Amin(s)ds J Amax(s)ds
e © < V(x(t)) < e © .

which leads to the expected values

t t
J Amin(s)ds f Amax(s)ds

E{e ° } < E{V(x(t))} < E{e ° }

For the left inequality of (4.32), we may apply Jensen's theorem [4.11]
which states that if g(x) is convex (i.e., g'"(x) > 0), then g(E{x}) < E{g(x)}.

Thus we have from (4.32), the lower bound

(t "t
E{J Amin(s)dS} J Amin(s)ds

(o] o

e < Efe o< E{V(x(t))}

Therefore, we must find

rt {'l'.

Ev ) Mo (s)ds}t = Et} ., (s)lds .
J min J min

o [¢]

For the oscillator §+-2g@i+-(m2+-f(t)) x =0, we have

dx(t) _

dc x(t) + x(t)

- ~25. -f(t)y O

(4.32)

(4.33)

(4.34)
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In the case that P=1, then we have )\ |, are obtained from, the eigen-
min,max

values of the matrix,

0 1-(w? + £(t)

1-(w* + £(t) -27w
These are respectively
Tw v fw? + (f(t) +wi-1)? . (4.35)

Hence, the lower bound on the E(”x H2 }, is obtained from (4.33) as

t
cmt—J{ E{/cZu?+ (f(s) + w?-1)2 }ds

e ° < B{||x]|*} (4.36)

By the Schwartz inequality, we can write

E{]ixIl} < E{[;xl‘z}l/z s

Thus, it follows that

1/2

E{/22uw7+ (£(s) + w-1)% } < E{z%w® + (f(s)+uw?-1)2}""'", (4.37)
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1
4 s

L,

and (4.36) can finally be written as

t

(cw—czwz)t - J E{(f(s)+—m2-l)2}ds 9
o < E{|lx{e) || “} . (4.38)

Y
S e
iS.Y

Thus, we have lower bounds that can be evaluated knowing only the second

=

moments of the coefficient process.

oS

Similar results can be obtained for upper bounds as well by the same

concepts. For example, see [4.12].

e

E‘ This section contains essentiallv all general concents that allow

< explicit solutions for the moments of linear systems with physical noise

N coefficients. Any other exact solutions are for specific cases. In general
for the physical noise coefficient case, one must approximate. This is the

R

subject of the next section.
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Y
A

v, Approximate Methods

A

Except for the various cases and examples that we have discussed in the

previous sections for which exact results are available, all other linear systems

with random coefficients must be looked at based upon some approximate method.

v 53

These methods of approximation involve expansions in small parameters, asymptotic
convergences in terms of small parameters in particular the various stochastic

averaging techniques, and finally the so-called closure methods in which expansions

| Xz |

in moments or cumulants are terminated based upon some assumed property. These are

the main topics that we will attempt to describe in this section. Since exact

B

results are few, one can be reasonably comprehensive in a survey. But approximate
results are many, therefore, we cannot claim to be comprehensive. Instead, we try

to present thHose results that are representative of the specific approach.

o,

V.1 Expansion Techniques

"

As we stated in Sections 1II, IV, when the coefficient process is a physical

{non-white) process, we cannot separate its statistics at a given time from the

ARy

response statistics at a given time. Therefore, for the general physical noise
we cannot, in general, even determine the first moment exactly. We can only
approximate. One method of approximation is by expansion. The literature

contains a great many examples of this approach.
Basically the idea is as follows.

For the linear system:

i BEE A

Eﬁ. d;‘t“) (A+ F(t))x(t), (5.1)

as stated before, A is an nxn constant matrix and F(t) is an nxn matrix

=

whose non-zero elements are stochastic processes. We can write (5.1) as the

ﬁ integral equation, with initial condition x(to) =X,

. ¢

e x(t) = b(t,to)xO + J $(t,s)F(s)x(s)ds, (5.2)
e

| "

. T e e e SRR e e A
. S - - . - -
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‘
2§ where the transition matrix ¢, is given explicitly as the deterministic matrix
exponential
Il A(t-s
o(t,s) = A7) (5.3)
x
o .
where (t-s) is a scalar parameter.
gg A typical recursive approximation scheme represents the solution to (5.2)
as,

xo(t) ¢(t,t°)x°

t
xl(t) = ?(t,to)xo + f b(t,s)F(s)xo(s)ds

B

3 : : ‘o
' ' t : (5.4)

i

?(t,to)xO + J @(t,s)F(s)xn_l(s)ds

t
[¢]

. . .
. . .
I . . .

To a certain extent most approximations to the time varying linear system is of

xn(t)

R

this form, or closely related to it. An associated procedure is to consider the

expansion in € of the system.

d—;‘éi)— = (A+eF(t))x(t), (5.5)

e

Upon writing the associated integral equation equivalent to (5.2),

we have

&2 &n

t

x(t) = b(t,to)xo + € f d(t,s)F(s)x(s)ds. (5.6)

t
o]

| &S

Lo

-
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o

[ e

Now expanding the solution x(t) in powers of ¢, we obtain the representation

x(t) = | < (©) (5.7)
k=0

P
.
vt

3

Substituting (5.7) into (5.6) and identifying the coefficients of the powers

of €, we obtain the sequence of terms xk(t), as

xo(t) @(t,to)xo

t
xl(t) = J Q(t,s)F(s)xo(s)ds

= 225 & 5

t
o
t
xz(t) = J @(t,s)F(s)xl(s)ds (5.8)
3 2
. t
xn(t) = J @(t,s)F(s)xn_l(s)ds
t
o

| '3 Em

Both of these ideas are quite classical. For example, one can find the
representation (5.7) and expansion (5.8) in the works of Kryloff and Bogoliubov

[5.1]. For a discussion see [5.2]. 1Indeed, this procedure is attributed to Poisson

P

and was studied further by Poincare in 1892. Naturally convergence is the problem
of significance, especially if € is not small. For £=1, this has been called
Adomian's method in the stochastic literature. See for example {5.3] and [5.4].

Given such a classical approach, it appears somewhat questionable to attribute

[ == =

the procedure to anyone currently active.

Of course the objective of these expansions is to obtain the statistics ‘

R

of the solution process. Following the notation in [5.3] we can write (5.2) as
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rt
x(t) - J N(t,s)x(s)ds = G(t,to), (5.9

t
o]

where

N(t,s)
G(t,to)

P(t,s8)F(s)
@(t,to)xO

Defining the iterated kernels Nk(t,s) as

Nl(t,s) = N(t,s)

t
Nk(t,s) = Jt N(t,r)Nk_l(T,s)dT (5.10)

(o}

k=2,3,...
we define the resolvent kernel of N(t,s) by the Neuman series

r(t,s) -Z N, (t.s) (5.11)
k_

This allows one to write the solution to (5.2) as

t

x(t) = ¢(t,to)xo + J F(t,s)¢(s,t0)xods. (5.12)

t
o}

In this case, the mean vector E{x(t)}, may be obtained as

t

E{x(t)} = (t,t )E{x } + J E{T(t,s)}d(s,t )E{x :ids, (5.13)
o o o )

t
(o)
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assuming that the statistics of F(t), and of xo are indeperdent of one another,
and, furthermore, that the A matrix is deterministic. If the A matrix contains

random constants, then the terms E{@(t,to)}, E{¢(t,s)} would appear in (5.13).

Although these procedures are straightforward applications of established
solution expansion techniques, obtaining the desired statistics is not made
truly simpler due to the complexities of the infinite number of terms to be
considered. Expansions of moments using such ideas have been studied by many
investigators. In the modern development of the topic, one can go back to the
works of Samuels and Eringen [5.5], [5.6] who studied stability of the second

moments of systems of the form (5.1) by such expansion techniques, (see also
[5.31, [5.7].

For a general development of this topic, one might look at [5.8]. Notice
that there is nothing fundamentally probabilistic about the expansion methods
above. The so-called Neuman series for integral equations, as well as the

perturbation expansions were developed for classical deterministic equations.

There are a number of papers which deal directly with approximations to
the joint density functions via a sequence of integro-differential equations,

that involve certain smoothing operations.

The first paper along these lines apparently is due to Kryloff and Bogoliubov
in 1939 [5.9]. Subsequent studies appeared in [5.10] and in [5.11]. Also comnsult

[5.12] for further referenced details.

V.2 Hierarchy Equations and Closure

Under certain assumptions, it is possible to obtain a set of equations
that will yield the moments of the solutions of systems with randomly varying
parameters. However, these equations may depend upon an infinite number of
variables that render them impossible to solve by finite methods. This is
typical of the type of problem one meets with non-linear systems in which
lower order approximants may be a function of higher order approximants so that
the equations are not closed. In that case, assumptions are put on the svstem
(which may or may not be justified) which will reduce the infinite heirarchyv of
equations to a finite set that can be solved. After solution of the finite set,
naturally the errors in the approximation must be studied. At this time, however,

there is no general statement that can be made regarding the errors introduced.
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We illustrate this problem for the case of the oscillator with a randomly varying
spring coefficient. We assume that the random coefficient is generated by filtering
a white noise. Thus, it is a Markov process, or more generally, it is the component
of a Markov process. One of the earliest papers to treat the problem in this way

was [5.13]. Thus, consider the oscillator,

Se) + 2cum(t) + [0 + y()]x(t) = 0, (5.14)

where v(t) is generated by the Ito equation

dy(t) =-sy(t)dt +dB(t), (5.15)

where the B-process is the usual Brownian motion. We recognize that the

y-process is the Ornstein-Unlenbeck process.

Now since y is generated by an Ito equation, then it follows that the

vector (X, X, y) is a Markov process generated by the Tto system

dxl(t) = xz(t)dt
dxz(c) ="[2waz(t) + (~2+y(t))xl(t)]dt
dt(t) =-=3y(t)dt + dB(t). (5.16)

Following along the concepts developed in Section I, we can write the generator

of the svstem (5.16) as

(9]

G
o

J

2

+

- 3 L SR,
& =x, 3 -l20ux,+ (W VIX ] 5 -3y , (5.17)

2
1 2 >y

o

)

and obtain the moment equations via the Dynkin formula, (2.22), as in

Section II.
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. th
Upon denoting the n  moment as

E{xi(t)x;(t)yz(t)} = n,

{ j L=
Jkﬁ‘t)’ where j+ k+ m (5.18)

we shall find the first moment equations to be

= m

100 010
010 T ¥ 1007254 Mp107 101
®o01 = ~“*Moo1 (5.19)
Here we already see that the MH10 equation contains a second moment,
= |
™01 Ekxl(t)y(t)}
For the general case, we shall have
. = ~2zukm,, , - km -km
Mope =3 Mol k1,0 TEO Mg T N 1 k-1, T 4+ 1,k-1,2+ 1 (5.20)

-34m,

02 9
k4 + E 2( _-l)mj

k,2-2

In (5.20), we see the term m which is j+k+ 2+ 1 moment, one order

j+1,k-1,2+1

higher than mjkz'

Ko for j+k+2 < n is not a closed set. It is,

instead an infinite hierarchy which we can express generically as

Hence, the set of equations mj

m = Gn(ml’mZ"'°’mn’mn+-l)’ (5.21)

always depending upon one order higher.
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This n, of course, is not a surprise since the system (5.16) is non-linear

in the variables (xl,xz,y) through the xly term in the second equation.

The objective of a closure procedure, would be to invoke a property or

assumption that would allow us to write the approximate equations

=G (ml 2,...,En). (5.22)
There is no general theory that allows one to measure the errors made with such
closure procedures. However, there have been many attempts to study this
problem. In the study of turbulence, [5.14] contains investigations of closure.
Closure ideas were applied to stochastic eigenvalue problems in [5.15]. Lie
algebra ideas were applied in [5.16] to obtain closed first and second moment

equations.

An investigation of error in the approximation, leads to results for one-

dimensional systems in [5.17] and [5.18].

Two classes of closure concepts naturally arise. They are Gaussian

closure methods and non-Gaussian closure methods.

The Gaussian closure idea is quite clear. Since all moments of a
Gaussian process may be expressed in terms of the first and second moments,
then the hierarchy is essentially closed by writing the equations for the
first two moments. Any higher order moments that appear in the first two
equations are then reduced to the appropriate expressions in the first and

second moments. Thus, for example, for the equation (5.21) Gaussian closure

reduces it to,

= B B M 7Y N Tt T Y ed Y @ TR

m = H (m m 5.23
n n( 1’ 2) ( )
for some new function H , and therefore
ﬁ = H, (m m
1 1( 1’ 2)

. m, = H,(m,, m (5.24)
E% 2 2( 1’ 2)
E becomes a closed set that can be solved in all cases for linear systems.

1]
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Of course the problem that exists here is that systems with randomly varying
coefficients do not in general lead to Gaussian solutions. The measure of
error from the Gaussian assumption may be large. This in turn may generate
large errors from the time moments. The reference [5.19] contains further

discussion and references of these ideas as they relate to structural applications.

Non-Gaussian closure techniques assume that all moments of order r>n can
be expressed in terms of lower order moments r < n. One may also express the
non-Gaussian closure assumptions in terms of cumulants. See [5.19] for a
discussion, and [5.20] for a recent applicationm. Cumulant approximations
have been used in studies of turbulence [5.21], and many other stochastic
continuing problems [5.22]. The basic idea comes from the characteristic

function of the underlying probability density for the solution process.

To that end, let us recall that the characteristic function of the

process x(t), is given as

s (5.25)

] . o, (5.26)

where mk(t) = E{xk(t)}, assuming all moments exist. (Otherwise (5.26)

becomes a finite series with a remainder term).

An equally important expansion is that of log px(u,t), which we shall

write as

(1u )

() (5.27)
o K

fhe-18

log :~x<u,t) =

The ;Xk(t)} are referred to as the cumulants, or semi-invariants of the

x-process. The connection between m, and kk are obtained as follows [5.23],

““1.- -/‘ .541\ Mh‘i\- LQ“I: H‘k'
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X =

1 ™

2 2

X = - =

9 m2 m c
A, =m,-3 mm, + 2m3

3 3 172 1

_ 2 2 4

ll )\a-ma-B m2-4m1m3+12 m,m, 6m1
etc. (5.28)
Inversely, we can also write
s T
_ 2

m2 = )\2 + )\l
m, = A, +3x,xA, + A3

3 3 172 1

= 2 2 4

m, = A4+-3A2 + 4A1A3 + 6k1k2 + Al

etc. (5.29)

The cumulants are also a measure of the 'distance" away from Gaussian.

For example, if m, = 0, we have from (5.29),

2 T M

M3 T A5

m, = 3r, Yy

m5 = 10)\2,\3 +)5

etc. (5.30)
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; But, for Gaussian processes one finds ey

8
[}
P
~
(]
Q
~

3

3
]

etc. (5.31)

The way in which the so-called cumulant neglect procedure is applied, is simply . :

to assume that for some K, such that for k>K, we set Ak= 0.

Since )‘k is a polynomial in My My _gseeoly, it follows that this will Tt
essentially close the moment equations. Thus, for our example (5.14), the :i

second moment equations are . t.r

ge
|

200 = ™10 <

e
[}

o -2 2 -2 . ' s
020 - T4%¥Mo207® M110”7M111 o

2
110 = Mogg~2%uMy 19 T Mygg "2y 0

&4

-Bm

"
3

o1 011 101 W

= -2zwm

2
011 011 ~® ™101 "~ 102 011

N
A

002 = =28 M322 + 0 (5.32)
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One can use the formula for the characteristic function in terms of the

cumulants

i(ulxl(t)+-u2X2(t)*'U3Y(t))

@(ulsuzyu:;’t) = E{e }
o *prs +r+s

= exp Z T oy L uP ol of

p,r,s5=0 plr!s! 1 72 73

and the fact that

SRS N _ ) 5K 5% o (Ut 0t
. - . I bl *
ik Bulj Buzk 3u32 172773
to obtain

™00 = Moo

D200 = 1200

= ) + ; + +

P01 = *aa Y ror1ti00 T 2o10t101t *001* 110t M0107 100

Therefore, if one assumes that the third order cumulant A is zero the

111
relation (5.35) would yield

M111 T ®o11™100 * Mo10™01 t ™001™110 T ™o10™00

which relates the third moment m to first and second order moments.

111

"i. 'q. AT T

» AV

(5.33)

(5.34)

(5.35)

(5.36)
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In the same fashion we could find similar relations for L and LI
Thus, (5.32) along with (5.19) would become a closed set of non-linear equations
to solve for the moments. This, however, would require numerical methods for the
solution. Explicit examples of these concepts can be found in [5.19]. For further

discussion of these concepts one can consult [5.24].

V.3 Methods of Averaging

The method of averaging for classical deterministic equations has its origins

in the works of van der Pol [5.25], who studied the non-linear equation

x(t) + w?x(t) = £ f (x(t),x(t)),

where ¢ > 0 is a small parameter.

He assumed a solution in the, now classical, form

x(t) = a(t) cos(wt + 3(r)),

where a, $ satisfy the equations

a(t) = ¢ £, (a(t))

He) = e £, (a(t)

For small ¢, they are, clearly, slowly varying and become constants as

£ v 0.

The idea was applied by a great many experts in non-linear oscillations
such as Mandelstam, Papalexi, Krylov and Bogoliubov, Minorski as well as others.
However, the method of averaging was not placed upon a firm mathematical foundation

until the major studies of Bogoliubov [5.26].

There are many interpretations of the method of averaging especially, as a
result of the concept playing an increasingly important role in applications to
stochastic problems. For a general survey of the method of averaging for

deterministic systems, see [5.27], for stochastic systems see [5.19].
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The classic result of Bogoliubov is as follows: Let a system be written

in "standard form", x,f are n-vectors

x(t) = e f (x(t),t), x(0)= X, (5.40)

where f satisfies boundedness and uniform Lipschitz conditions in x for some
region DCRn (Rn is n—-dimensional euclidean space). Furthermore, let the

limit (time average)

f(y) = lim
T4

==

T
J f(y,t)dt (5.41)
(o]

exist uniformly for y €D. Then, given any n> 0, and an arbitrarily large
T, there exists an €5 such that for O<e <eo, the solution y of the averaged

equation,

y(t) = e (1), y(0) = x_, (5.42)

will satisfy,

I y(e)—=x(e) || <n, (5.43)

for t & [0, T/=}.

Of even more interest is the case that f(yv,t) is almost periodic in t,

uniformlyv for y€D.

In that case it is a classical fact that the limit (5.41) exists. Further-
more, Bogoliubov established that the inequality (5.43) holds for t € (0,=).
Therefore, the averaged solution y(t) becomes a uniformly close approximation to

the true solution x(t) on the entire time domain (0,w°).
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This is an especially important result, since it allows us to determine
qualitative properties such as stability and boundedness of the solutions of the
original system (5.40), in terms of the averaged constant coefficient system
(5.42).

This is especially straightforward for linear systems of the form

x(t) = A (£)x(t). (5.44)

In order to apply these ideas, a linear system must be put in the standard
form (5.44). We can see how this may be done through the following illustrative

example.

Example

Consider the simple oscillator with periodic coefficient,

d x(t)

dt2

+ (1 + coswt)x(t) = 0. (5.45)

we may write this Mathieu type equation as

dxl(t)
—ar - %(®)
H
dxz(t)
——d—t——- = —(l + COSUC)X(t)- (5'46)

Let us assume that w is very large as compared to unity. Thus,

coswt is a very rapidly oscillating coefficient term.

In particular let us assume that

w
[¢]
w = —, where O0<eg, =<< 1. (5.47)
‘ -
4
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If we substitute into the cosine term

w
o
coswt = cos ? t = COS(UOT,

we can define the '"fast" time T = {?—.

Upon making these transformations in (5.46) and noting that é% = p—

we obtain the standard form,

dxl(r)
R ALY
dZ$(T) =wg (l+-coswor)x1(t)

Thus, we have put equation (5.46) into the standard form (5.44),

with
4] -1

A(t)y= -

(1+cosw t) 0
o

It is quite obvious that the time averaged matrix A is,

-’l a0

Id ' Cafp 2l
v el R 2% 0 K ~“

LR e oI AR
h..l!u‘.ﬂ.’f!n. .o"o'.';:'o‘?’!!'o, .o.o~ L4

(5.48)

(5.49)

(5.50)
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Therefore, by Bogliubov's result the solution vector y(t) defined by

dyl(r)

o T

@, (0 5.51
—— ==y (D), ¥(0) = x(0), (5.51)

will remain "close' to the solution of (5.46) for all time, t g [0,=).

The question now arises, is there a version of the averaging method that

is possessed by systems

x(t) = £(x(t), n(t)), (5.52)

where n(t) is a stochastic process with suitable properties.

The motivation for asking this question is quite clear. It is a
fundamental fact that if the elements a,,(t) of the stochastic matrix A(t)

1]
are stationmary stochastic processes, then the time average

1 T
lim T J A(t)dt (5.53)

TAm= [o)

exists with probability one.

Furthermore, if the elements aij(t) are ergodic processes, then the
limit (5.53) is equal to E{A(t)!} with probability one. As a result of this
fact, it follows that there should be an averaging result for stochastic

systems.
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We can illustrate this for the case of the inverted pendulum {see Fig. 1],

with base excitation n(t). The linearized equation is
o+ i-2 Gy+g a=0 (5.54)

where m,c,? are mass, damping factor, length, and g is the gravitational

constant.

In terms of canonical variables, @9, ¢==g£ , where L=T -V is the
26

Lagrangian and ¢ is the generalized momentum, we obtain the equations

°;> =-m[m£)-1;+ﬁ(t)e][ﬁ(t)+2 2 %] + mgi 5

= @ s ays (5.55)

De

as a phase space form of (5.54).

Now let us assume that the random base excitation function n(t) is of

the form,

a(t) = ew(e ey, (5.56)

where £ >0 is a small parameter.

We see from (5.56) that the = coefficient implies a small variance for
n(t) if the variance of w is fixed. Furthermore, the time shift t-*e-lt in w

nas the effect of shifting the average power to higher frequency ranges.

Upon setting E-lc = 7 in (5.56), (5.55), we will obtain, with "."

denoting ﬁ%,
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o =—eml(md) Tpw(r)e) [we(r) + 2 L8] + cnge s

8- = e @) Yr+wi(r)el, (5.57)

which is in the standard form to apply the theorem of Bogoliubov.

We assume that w’(t) is stationary ergodic with

E(w (1)} = 0, E{(w (x))?} =0, (5.58)
Upon writing the system (5.57) in the form (5.44), we find that
the A-matrix is simply
-1 [w(t)+2 E—] -m [W‘(T)2 + () 2 X8 g2
£ m m

A(t) = (5.59)

w” ()

—
bl Ll

whose time average, by the assumed ergodic assumption on the w (1) process, is

obtained from (5.58) as,

c 2
- - —~o2
2——m m[o7-g?]

» |
»

(5.60)
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Therefore, Bogoliubov's theorem implies that the sample solutions of the
original system (5.57) will be close to the solution of the constant coefficient
deterministic system for time intervals of the order 0(l/c). We note an
immediate result of (5.60). If o< > gi, then A is a stability matrix. Thus

all sample solutions of (5.57) should decay exponentially, ar least for time

intervals of order 0(l/e).

Simulation studies for the inverted pendulum with stochastic base motion
[5.28] have suggested that the solutions might be close for all time if the
solution process is bounded and the power is concentrated in the higher frequencies.
A proof for a specific form of base excitation that is bounded was given by

Bogdanoff in 1962 [5.29]. He considered excitations of the form

N
n(t) =} a, cos(u,t+.,), (5.61)
i=1 1 1 1

where {aiy, {@i} are given constants, all a; are "small" in magnitude,

w; are "large" and all [gi-wj§> K for some constant K.

Finally, the {vi} are independent random variables all uniformly
distributed on [0, 2I'}. The functional form, with these assumptions does
fit within the scope of Bogoliubov's theorem for almost periodic excitations.
Bogdanoff's proof was based upon linearizations and comparing of small terms.
Experimental results [5.30] corroborated the theory of [5.29] excellently, even

to the loss of stability when two distinct frequencies wi’%j become close.

A generalization of the results in [5.29) was presented in [5.31] for
linear systems in the standard form (5.44), where the ergodic matrix A(t)

satisfies,

(a) Sup || A(t)y < M,

t
© (5.62)
(b) Sup ¢ | [A(t)-Pldt | < M,
t Jo -

where P = ETA(t) ;.
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It was established that if P is a stability matrix, then the solution to

! y =Py, y(0) =x(0), (5.63)
.
ki - satisfies
e
. " lin  Sup | x(t)-y(e)|| =0, (5.64)
WD ev0 £ €(0,®)
1)
S
R )
s hﬁ with probability one, where x(t) is a sample solution to the stochastic
[} 1

linear system (5.44).

w"
A E: Unfortunately, this result requires the rather strong assumption
B WL
fﬁ (5.62)(b). Although, this is known to hold for almost periodic matrices,
j t} A(t), we cannot state any general statistical properties that will guarantee

L%

* this assumption to hold in the stochastic case. These assumptions were also
ﬁ- 2 used in [5.32]. For more recent results see [5.33].
.,. *-
fj- g We should mention at this point that even if the time average of the
b ii stochastic coefficient matrix A(t) exists, we cannot expect the solution
process to be close to the solution of the ensemble averaged system, if
,5 . there are no further assumptions such as ergodicity. This can be seen by the
oy
o following simple example.
-. ]
. Example. Consider the first order scalar equation
[~ <
l‘j
IEAY x=ebx, x(0)=1,
" f.'
1 T
A
N - where b is a bounded constant random variable with E{b}=p< 0.
s Thus, the ensemble averaged system is
(l ‘y~“ .
- y=epy, y(0)=1.
O
.
.
{l
<.
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How do the solutions, x(t), y(t) compare? In particular, what can be said N

about

lin [x(t) -y(t)| =1lin | e":bt-e's'pit!. (5.65)
e+0 e+0

It can be shown that for a,3>0, a# 8, we have by simple calculus,

&) o]

a-8 g a=8

-at -8t]=’(§) - (:) [ > O,

Sup {e -e
t

which occurs at t = E%E (loga - log3) > 0.

For our case (5.65), the € cancels out, and we will obtain for b<0,

cb ept : v

Suple®Pt - &P [=|(%) -<%) >0 (5.67)
t

independent of ¢!

Hence, the solutions cannot become close as & + 0, assuming only that

time averages exist!

For the case of the white noise excited system, we can write an
averaging result that relates the stochastic response characteristics to the

associated averaged deterministic system, [5.34].

In particular, for an Ito system of the form,

dx = c(Axdt + F(x)dB), x(0) =x_ (5.68)

where A is a constant or periodic matrix, F(x) is a matrix whose elements
are linear functions of the vector x, and B denotes a vector of Browmian

motions, it follows that the averaged system
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y=eay, y(0)=x_ (5.69)
satisfies
lim Prob { Sup [ y(t)-=x(t)]|| > s}=0 (5.70)
e+0 te[0,»)

for any § > 0.

In this case, as before, A denotes the time averaged matrix defined

by (5.53).

The effective importance of this result, is that if the structural
excitations are wide band Gaussian then we can treat the system (5.68) for

small ¢, as the deterministic averaged system (5.69).

Furthermore, the response characteristics of the true system (5.68)
will remain close to the solution of (5.69) for the entire time interval

[0,).

The question of controlling the true system through the averaged model also

becomes possible. The control problem is discussed in [5.34] as well.

Many averaging methods that have been developed for the study of stochastic
systems have not taken the view that we have discussed above. The basic
milosophy that we have discussed above is essentially to replace the true system
with random excitations by a system that essentially averages out the random
fluctuations leaving, in a sense, the mean system which is deterministic. If
the true and the mean s/stems are 'close'" for all time, then we can restrict our
study to the simpler mean system response, knowing that it will be very close to
the true system dynamics. On the other hand, the philosophy that drives the work
of Khazminski [5-35], [5-36], [5-37], Stratonovich [5-38] and Papanicolaou [5.39]
is to replace the original random coefficient system by one that is simpler
through an averaging procedure. Generally speaking their averaged systems are
close to the true systems in the sense that the probability distributions
generated by the averaged system are close to the probability distributions
generated by the true system. This is referred to in probability theory as

weak convergence.
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It differs from the results we have described above, in which we are

concerned with the actual response of the system being close to the response

of the averaged model. This is called strong convergence, or almost sure sample
convergences which will imply that the probability distributions will be close.
The important difference is that from the structural engineering point of view
we are concerned primarily with the actual structural response of the systems.
However, the weak convergence point of view does allow one to obtain probability
distributions for averaged systems, when it may not be possible to determine the

distributions for the true randomly excited system.

To a great extent this approach was motivated by [5-35], where an
averaging result was established for partial differential equations. 1In

particular, we consider

u=
T eL(x,t)u, (5.71)

where L is an elliptic or parabolic second order differential operat

with sufficient regularity conditions relative to the (x,t) variables.

Let
T
1
L (x) = lim T | L(x,t)dt, (5.72)
T4 0
be the time averaged operator.
Then, if v(x,t) is the solution to
No_eL (x) | (5.73)
3t o XV '
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for the boundary condition
=
\Q
! u(x,T/e) =v(x,T/e) = £(x). (5.74)
it follows that,
3
r‘i
lim Sup lu(x,t =v(x,t)] = 0 (5.75)

2 |

e+0 (x,t) GRN [(0,T/€]

The importance of this theorem for stochastically perturbed systems is the

=5

following; for the Ito system

E dx =m(x,t)dt+o(x,t)dB, O = (Oij) (5.76)

. where x,m are n-vectors,o is an nxn matrix and B is an n-vector of
b Brownian motions, we know from Section II, that the generatorgis given

as

-
81

A0
N

S 3 i 32
Q=izlmi(x,t) il zi,j=1bij (x4t) = (5.76(A))

E}xiaxj

i

where

r
e

A
o
1}
Flasele]

Tl g

It immediately follows that the generator for

e

dx = em(x,t)dt + V¢ o(x,t)dB (5.77)

e
-

=la

becomes EQ, wheregis defined by (5.76(A)).
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Hence, the theorem states that the probability distribution generated by

dy = em(y)dt + ve o (y)dB, (5.78)
where
T
ro_ 1 f
m(y) = lim o J a(y,t)dt
T4eo 0
<
T
b = lim X r b..( d 5.79
( byy @) = lim g JO 33 (ot)de, (5.79)

(E(y) is obtained from (Eij(Y))’ is close to the probability distribution
generated by (5.77) on the internal [0,T/ec]. Examples of this approach for

non-linear systems may be found in [5.37].

Perhaps the most interesting form of averaging methods can be found in
{(5.36], [5.38], [5.39]. 1In a sense these constitute an extension of the
central limit theorem, for diffusion processes. We shall mention the result
in the form stated in [5.36] (which puts the results of [5.38] on a firm

mathematical foundation).

Consider the standard form,

z2(t) = eF(z(t), x(t), t), 2(0) = z, (5.80)

where z,F are n-vectors, x is a vector stochastic process, where for each

component Fi of F, we assume that there is a constant C, such that

3F 32F
i i
|Fil< C’ I I BZ,BZ
j ok

azj I <C

<C,|
(5.81)

uniformly in (z,x,t).
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It is assumed that the x-process possesses the strong mixing property.

This essentially means that as time intervals [0,t], [t+s,») become
further separated (i.e. as s *+ »), events defined on the x-process, over

these two intervals, will become independent.

Finally, it is assumed that E{F(z,x(t),t)}=0, for fixed z, and the
following limits exist uniformly in z,

fT ( 1 n BFi(z,x(T),Tl)
lim = =
Tt: J drl ] dTZ E{ El ™ Fj(z,x(tz)rz)} bi(z)
. 0 0 h h
T rrl
3 l { =
lim T J drl J drz E\Fi(z,x(rl),rl)Fj(z,x(rz),12)} aij(z). (5.82)
Tt 0 0 .
Under these conditions, the process z(e)(r) defined by
2 () = 2 /e, r = e, (5.83)

converges weakly (i.e. in distribution) to a diffusion process whose generator,

or backward operator, 5?, is given as

n n
1~ 32 )
P==)  a, (z2) —=——+) b, (z) — (5.84)
2 i,3=1 ij 82132, o1 3 sz
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Since we can always associate a white noise coefficient, Ito, differential
equation with the generator (5.84), then it follows that the statistics of the
solution process of (5.80), will converge to the statistics of the solution

process of
dy = b(y)dt + G(y)dB, (5.85)

where the vector b(y) and matrix G(y) are determined by the (bi(z)),(aij(z))
of (5.82).

One important note, the convergence is weak convergence. Therefore, we
cannot say that the actual sample response behavior of (5.80) will approach
the response of (5.85), we can only say that their statistical properties as
governed by their joint probability densities will become close as ¢ approaches
zero. An extension and further development of these ideas are due to Papanicolaou,

[5.39].

The following example of (5.39) is illustrative of the procedure. For

further applications see [5.40] and [5.19].

Consider the undamped oscillator,

X(8) + (2 +en(e))x(t) = 0, (5.86)

where the n-process is bounded, with covariance v(t). We can put

(5.86) into the usual phase-space form as

x1 0] 1 Xl 0 0 xl
. = 2 + > (5.87)
22 - 0 x2 -n(t) 0 x2
*1 *1
= A + eN(t)
Xy Xy
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o Upon applying the transformation
!
! zl N xl
=a70F , (5.88)
™y
s %2 %)

-
ol

. . . -at s .
noting that the matrix exponential e " yi11 generate trigonometric terms,

B

the equation (5.87) may be written as

o

z z
s P 2 2
. zy en(t) [Zw sin“uet + —5- sin“wt]
g w
. 2 )
o = - - —£ si
g? z, en(t) { zy cos pt 20 sin2wt], (5.89)
=
o
' Cne final transformation,
i z, = ercose, z, = -w ersine, (5.90)
-
A
»
transforms (5.89) into

-
24 r = en(t)G(8,t)
o

3 = en(t)H(S,t) (5.91)
o
o4
: where G, H are trigonometric polynomials in (5,t). Therefore, G,H are
V-]

bounded and the averaging theorem of Khazminskii-Stratonovich-Papanicolaou

gi can be applied to obtain the generator

-
-3
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-2

=3

\
s 2 2
: b 3 3 by 3~ 3
L=FS+b5p+ @) —3+egy, (5.92)
l! 3r 39
‘F where from (5.82) one obtains
1
a=uw 5(0) . b=wRe[—Sﬂ],c=mIm[M] (5.93)
4 4 4
A
E with
g :
t iwTt
S{w) = [ v(t)e ™ dr.
Es 0
E: Thus, the second moment approximation to E{xi(t)} on the internal [O,T/ez]
x is
i 2 1 W 2 €2w2
E{xl(t)} =5 exp{z-[ReS(Zw)-ZS(O)]a t}cos(2w- 5 ImS(2w))t
ad
Y’
{15
1 2
+ = exp[wReS(2w)e"t]. (5.94)

2

o3

We can further note that the generatoriz7given by (5.92) implies that

r,5 processes are independent. (Since‘g?z ﬁZ; +£Z%). Therefore, we can study

AL

the r-process through

h k|
Y
N

- - b _3 3
;Z; =35 +tba (5.99)
- ar
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whose associated Ito equation is

dr = bdt * /b dB. (5.96)

Since the constant term b is positive, it follows that

lim r(t) = « with probability one. (5.97)
tteo

This will imply that (21’22) and therefore (x ,x2) are growing in an

unstable manner on the internal [O,T/sz].

This concludes our discussion of averaging methods.
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VI. Perturbation methods*

Consider, for example, the rth natural frequency wr of a system.

T R

E Assume the parameters depend upon random variables Xl, ey xm. Then,

i we seek an expression for wr, now regarded as a random variable, in the
g gg form

[ m m m

.g §§ o o= + iflkixi + 151151 Aijxixj + oeee o

J- where the Xi are regarded as small perturbation terms, Er represents the
& '% rth natural frequency of the mean system, and the Ai, Aij’ «es are to be
% &a determined. While some authors replace Xi with EYi, € being the

perturbation parameter, we shall not usually do this. Once we know the

e

Ai’ xij’ +ssy We can obtain statistical properties of wr or any other

quantity of interest. Let us consider a general formulation of this

i' problem, considering natural frequencies and normal modes first.

:E o Zarghame [27]} sent one of the authors a method of this class which
;: Q; appears well suited to computation and which makes a useful suggestion
g !! on how to introduce random parameters that merits attention. This
'F ; method has never appeared in print in so far as we know. Therefore, we
;i g* shall write out the details in order to have it before us.

e We are concerned in this subsection with the free motion of a
fi ig conservative system. Thus, in (6), C = 0, f. = O, Now the elements in

1
the symmetric stiffness matrix K are determined by the bars, beams,

Rl

- columns, joints, etc. making up the structure. The uncertainties in

2

-
S

.

* References in Sections VI-IX are given at the end of Section IX.
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the structure reside in these elements. Let there be m structural

elements in the structure, and let the stiffness matrix of the ith

structural element in terms of Qus eees Q4 be

Ki = (1 + Xi)K , i=1, e, m, (6.1)

which produces the (nxn) random stiffness matrix

K = fKi = {Kjk} . i (6.2)

The random variables X ceey Xm describe the uncertainty present in the

1’

structural elements and we assume

2
EXi o, Var Xi 9l (6.3)
K, is the mean stiffness matrix of the ith element, K = KT, i.e. K is

__i

symmetric in the K Kk is the random stiffness element corresponding

jk* K

to qj and 9 and we assume masses of the elements do not change. The

advantage of (6.1) and (6.2) is that statistical dependence of the Kjk

is brought in a straight~forward manner. We note also that we can write

(6.2) as

K=K+ IXK , K-=IK (6.4)
which gives also
IK
EK’E and -a—xI—Ei , (6.5)

where K is the stiffness matrix of the structure with each number taking
its mean stiffness.

We can now write (1.26) as

Iq +Kq =0, (6.6)

~
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where q is the (nxl) column vector with transpose

qT = {qla eeey qn} . (6.7)

Assume normal mode motion

q = a cos(wt + ¢) (6.8)

with a the (nxl) column vector defined by

ol = {ajs «-o) an} . (6.9)

Then, substituting (6.8) into (6.6), we obtain

(X - «’I)a = 0, (6.10)
where again I is the (nxn) unit matrix.
The squared natural frequencies w: are determined by the n roots of

the equation

det|K - w’I| = 0 , (6.11)
revealing that the wi and w, are random variables since K contains
random variables. Let the random mode corresponding to w be the (nxl)

column vector a . Then we can write

(X - miI)ur -0, (6.12)

with the usual orthogonality relations

aTIa =0 , aTKa =0 ifs#*r
r r s .

T T. 2
arIar 1, arKar w o, (6.13)

where "super T" denotes transpose.

We are now interested in expressing the random variables mr and ar

in terms of a series in the random variables Xi. The expressions we
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ESd
Rt

seek will be power series in the Xi. Notice that in this formulation v
and a, are regarded as functions of the uncertainty in stiffness in each
individual structural member.

Differentiate (6.12) with respect to X, :

R Xl

i
awr aa
(51 - 2wr S I)a + (K-uw I) w 0. (6.14)
ﬂ Next premultiply (5.14) by a;l_‘ obtaining
A T dw
. - —r =
11’:(5:l Zmra)(:l I)ar 0, (6.15)

since by the symmetry of K (K = KT) and (5.12)

!

T 2
ar(K mrI) 0.

ol ]

3

Thus, with the last two of (5.13)

i am1' 1 T
o T (6.16)
ﬁ This is to be evaluated at X = oo = X =0 (1.e. X = 0); we obtain
aw
5 - L aTK a_ (6.17)

(ax o 2w —r—i-r
—-r

where the underbarred quantities are to be evaluated for the system with

L 03)

mean stiffnesses. We note that (6.17) give the sensitivity coefficients

»

At {19,25] of w with respect to the Xi.

o The ak, k =1, ..., n span the coordinate space; hence, we may
Y

h write

s 1
&

, Ja

S, r _ co(3)

,-

i We substitute (6.18) into (6.14):

Do

3

' ' .3-‘2- '3- '3- AT “} :r“} ;- 'r")- e ',-:"-:: %-f.?f‘-r{._ e ¢'.~' Dy _‘t *.r :’-:" ':. DAY ' AT aglay "‘.J- 0 .~'*.- .a".r
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am

- - (j) -
(51 2mr 3Xi )a + (K-w I)§B j 0. (6.19)

Now premultiply (6.19) by ai, obtaining

[ ]

T 3m

- - (j) -
ak(Ei Zwr axi I)a + a (K w I)§B j 0,

or, for Xk # r and with the use of (6.13)

(wIZ( - )B(k) ak—ia .

Differentiating the next to last of (6.13) with respect to Xi gives

2T

da
T r
Al z—=20
a 9
EB r Xi
which on premultiplying (6.18) by G:I then demonstrates that B(r) =0,
g Thus,
z T
K,a
! MO b S
m2_w2
"y k r
o (r)
rj =0, (6.20)
g and hence from (6.18)
2
‘;'.: da uTK a
—L = 1’ k=i r a (6.21)
aX 2 2 k° *
- i ] w-w
3 . £
~ where the prime on I means that j does not take the value r. When
:5 evaluated at X = 0, we have
A da S?Kigr
s ( == (6.22) |
1 3 Er-_“_’,j |
i where again the under barred quantities are evaluated when members take
‘! j
% |
N
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on their mean stiffnesses. We note that (6.22) gives the sensitivity
coefficients [28] of the mode shapes with respect to the Xi.
Next differentiate (6.14) with respect to Xj:
g
2
amr awr 3 mr awi aar
=2( + w YIa + (K, -2w ——= 1) —— (6.23)
33 F)
a axj Xi r BXi Xj T —1 4 BXi 3Xj
3w Ba 2 azar
E * &2 BXj D 3x + (Ru D) 3% B 0.
. Next employ (34) for aar/axi and 3ar/axj in (36) and premultiply by u:;
E these operations yield
& )
ﬁ aw am d . (k) 'I‘
) 2(3X -a——j+ w 5% axj)a Itxr +1}: 8 i3 p—iak (6.24)
X
W Bm
I (k) T (k) T
-2w Z’B Ia + L’B K.,a
~ r 3X, i K ij Kk ri r—j k
aw
N o,
-2w £ B( Ia .
T ij Kk 11 %%
:': Since by (6.13) and (6.20),
(k) T (k) T =
g iBiiIak—ZBjaIa-o’
and by (6.20)
T (r) T, o _ a(r),,2_
- u K% = By (“’ k)' @Ko = By (9wl
hC find.
’& we n
‘ 2
X: 9w
r (k) (r) (k) (r)y,,.2
ﬁ FW [i (Bri kj Brj ki )(w w) (6.25)
he dw_ dw
'::‘ -2 s r l']
A Xi 5Xj
i or at X = 0,
i
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2
oy () 5 (£) 5 (k) g (x)
R0 = 715, Bt By oy B ) (W) (6.26)
i3 k
dw Bm
1
- ( ) ]
3
Xj o
To go further, we must first evaluate 32ar/3X13Xj. Let
2
d a
r (k)
'Sxiaxj = zsr 13% (6.27)

since as with (6.18) the ak

of (6.27) into (6.23) yields

span the coordinate space. The substitution

2

awr awt 3 w amr aar
-2(-37(—-3?‘ + (Dr 3X ax )IG + (K 2“’ X 1) % (6.28)
i i i7] i J
am aa (k)
+ (Ej-Zw axj 1) BX + (K-w I)ZB 13 @ = 0.
Premultiplication of this equation by a{, 1l # r, and the employment of

similar relations as used to obtain (6.25) ultimately yields for 1 # r.

8(1) o1 [aT(K 2w awi) aar
r,ij 2 2'1'=i 19K, X
wo—w, = i i
r 'L
1 awr aar
oy % j) axi] y

If we differentiate the equation before (6.20) with respect to Xj, we

(6.29)

find

32a aaT da
r r r

= - I
a -
30X X, T

Then on premultiplying (6.27) by GzI and employing this relationship the

QTI
r

result
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(r) Baz Bar
Rt (6.30)

follows. Equations (6.29) and (6.30) can now be evaluated at X = 0, and

we obtain

aza

r = palk)
Gran o T (i (6.31)

We could rewrite (6.29) and (6.30) employing previously determined
expressions for the first partial derivatives contained therein but this
is not particularly helpful. The procedure for going further is
straight forward but we shall not write out the details {in order to
conserve space., Let us summarize our results up to this point.

We have for the random variable

2
awr 1 i wr
w =W + f(—g)q)oxi + L) X Ky * e (6.32)

244 9% 9K, i
where the partial derivatives are supplied by (6.17) and (6.26). We

also have for the random variable

2
aar 1 3 ar
) Xt G KX e, (6.33)
axi oi 21j 3Xi Xj oij

where (6.22) supplies the first partial derivative, and (6.29), (6.30)

a =a + I(
r -t g

supplies the derivatives in the double sum. Before looking at the
statistics of wr and ar, let us consider how the Ei and K are computed.
Consider, for simplicity, a plane frame consisting of pin-ended
straight bars. Let the IOth bar connect joints 13 and 19, for example.
Let this bar have length 110, mean area AlO’ mean modulus ElO’ and mean

direction cosines A1o and g 28 shown. Let the elastic displacements
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at the joints be (u13, vl3) and (u19’ vl9)'
V19
v—-vulg \ i} XIO
10 ]
1 =10
=10
Y10 y
v
13 - 10
/410 )|
=~ ~10
Y13 %10
The mean elastic potential energy stored in the bar is
A . E
v =-% — 6%0 , (6.34)
=10
where to first order in small displacements
810 = (upgmupgdiig + (vigmvyduy, - (6.35)

The éubstitution of (6.35) into (6.34) gives, on arranging terms, 510

columns

Y13 Yi32 0 Y9 Y19
AEA? AEAM _ AEX" _ AEAy

u13 _1— _1- * 0 -1— i
AEAp AEu2 - A _ AEu2

v13 l .]-. e l l

tows . * . L N ] * L[] =£10’ (6.36)
2 2

_ AEA" _ AEAy AEA AEAp
Ulg 1 - —i_" es e ——-]; _l
v _ AEAu _ AEu2 AEAu AEu2
19 —-1_' 1 LN N i —l

where all other entries in the 510 matrix are zero, and, hence

N RN A AR TS LT SR R e ls I SR RS Ny |




am =5 R

KlO = (1 + X10)510 . (6.37)
’ Thus, according to (6.2)
4
b~
N m
% K= LK . (6.2)
i=]
B Note that XIO represents the combination of all the random variables
1
. that may enter AlO’ EIO’ 110, 110’ and H10° assuming uncertainty comes
f; only from the bar and not the joints. If the major share of the
uncertainty in stiffness of bar 10 comes from the joint connections,
M
E; then xlO must describe this fact; in this case, XlO may be dependent on
E§ the random variables associated with those bars sharing the joints with
bar 10. Finally, it may be advantageous to introduce random variables
0’.
Ea associated with only joint behavior if its behavior has a substantial
\
- influence on stiffness of the structure. We conclude from this brief
. discussion that the X

1> e Xm may be independent random variables if,

for example, only bar stiffness need be considered and the bars do not

5l

interact with each other; however, it is poss}ble the Xl, eney xlO may
g be dependent if the bars interact through joint behavior. Equation
(6.36) demonstrates that by attaching random variable to physical
gs element’s stiffness coefficient, statistical dependence in K is easily
ss included whether or not the Xl, ooy Xm are dependent. Let us consider
&3

the statistics of mr, ettt oes

b ' Consider equation (6.36) first. We have, on taking expectation,

o

;Q 1 32mr

h: E{wr} = 2’!‘ + EEZ(W)OE{Xin) + e (6.38)
13 717)

ﬁﬁ Even if the X’s are independent E{wr} * CIY since the EX§ # 0 terms are

still present. Now square (6.32) and take expectation:

.
4
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2 32w
E{w? b omwl+ 20 “(ax ax ) E{X,X } (6.39)
. 13 j°
am w
, + Il(5% ) (552) JEIX X }
E 13 X, axj 173
am 32w
+ 2LII( L3 ( ) E{X X.X}
ﬂ ijk'é’— ax axk i jxk
32w 32w
. + IIzy( ) ( )E{XX X} + eee
1361 X ax o axkax i jxk

We can now approximate Var mr; it is defined as

2 2 2
Var wr E{mr} [E{wr}] . (6.40)
Thus, it is a straight forward task to approximate the first two moments
of w .
r

1f we extend (6.32) to cubic, quartic, ... terms in the Xi’ then

(6.38) and (6.39) would contain additional terms. How far we should

B = B3R 5

continue this process will depend on relative size of the terms

containing E{X X (}, E{X ijk}, etc. and what information we have that

g

1]
would enable as to evaluate these expectations. It is not usual that we
can evaluate any more than E{Xi j}

Let us consider the determination of the distribution of mr. To do

this, we require the joint distribution of X ceey Xm; denote the joint

l’
probability distribution by fm(xl, ceey xm). Then,

Fwt(w) = P{wr < w) (6.41)

= f...ffm(xl, esey xm)dxl cee dxm

I3 55 B2 Bl

where the multiple integral is over all xi such that mr < w, and where

from (6.32),

R B W XL

.« .
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3mt 1 azwr
wr(xl, LICN Y xm) = 9—’1‘ + f(a—x;)oxi + ifg(a—x:a—i;)oxixj + ee v (6.42)

Evaluation of (6.41) is a formidable task even for m reasonably small.
This paragraph is thus largely cultural in so far as practical
application is concerned.

We have put in this detailed treatment of Zarghame’s method since
it is not in the literature and appears useful as mentioned earlier. In
particular, we note that it gives sensitivity coefficients for natural
frequencies and correspondence normal modes plus series expansions for

these quantities in terms of the random variables X ceey Xm that

l’
define the uncertainty present in the stiffness matrix K. Moments of
the quantities are easily obtained, but it is practically impossible to
obtain distributions for the natural frequencies and corresponding

normal modes. For confidence interval location and size for a natural

frequency, for example, we must approximate using

E{wr} * 3\ Var W (6.43)

as a rough indication of a 99% confidence interval. This interval gives
us some idea of the spread in a natural frequency and it could be
employed to make reasonably sure that no steady excitation frequencies

were contained therein for all wr. Alternatively, we might employ the

signal to noise ratio

E{mr}
—_— (6.44)
Var o
\ r

to obtain an idea of how important stiffness uncertainty is for natural

frequency; if (6.44) is greater than 20 or 30 say, we would regard the
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location of wr as deterministic; on the other hand, if (6.44) is less
than 5-10, it might be uuwise to ignore this level of variability in the
location of @ depending, of course, on the consequences of such
uncertainty.

Next, let us consider frequency response. The Fourier transform of

(1.26), with the unit mass matrix I replaced by M, is

(K - wlM + 10C)Q = F , (6.45)
where
1 . twt 1 . dwt
o .
Q=5 £. qe’dw, F = o {“ fe  “dt . (6.46)
Let the (nxn) matrix
(K - w?M + 10C) = Z(w) = 2 . (6.47)

The inverse of Z, written Z-l(m) = 2—1, satisfies

227l a2 a1 (6.48)
Writing (6.45) as
ZQ = F , (6.49)
we find on using (6.48) that
-1
Q=2"'F, (6.50)

where the explicit dependence of Q, F, and Z-1 on w is not shown.

The matrix Z_1 is called the frequency response matrix of the

system. The physical meaning of Z-1 is as follows: write

-1

-1
Z (w) = {ij

(w)} ;

-1
then the element ij

is the complex response amplitude at q, due to a

3
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unit force (with proper dimensions)

iwt
e

acting at qk; i.e.

-1
jk

(output) due to the above force at 9 (input).

h|
The symmetry of the matrices M, K, and C establishes the symmetry Z"'1 =

jk
;; Ta Z-l. In a lightly damped structural system, when

amplitude IZSi(w)I is plotted as ordinate against w as absicssa, sharp

t

771 wyel®

is the response at q

27 or 27H

peaks will appear in these curves in the neighborhood of natural
frequencies of the undamped system. This means that resonance (large

amplitudes) occurs in at least some of the q

arerc == B - B - B - N R -

due to this force at q.,
k

3

when w is near to one of the undamped natural frequencies of the system.
Put another way, if we regard the system as a mechanical filter, only

frequencies close to the undamped natural frequencies where there 1is a

tu;r'é

peak in |Z;i(w)| will show up in the output qj for the input q, -

%

Knowing Z-l(w) we obtain the response vector q by taking the

inverse Fourier transform of (6.50); thus,

FeR

q= [ elvt 2" (w)F(w)dw . (6.51)

s

If the excitation vector f is a wide sense stationary random process, or

if £ {s periodic, Z-l(w) is also the quantity needed to obtain the

response q. Hence, our interest in Z-l.

s ==

The inverse Fourier transform of Z-l(m) produces the impulse

response matrix H(t), a (nxn) matrix:

=4

&G

BTN
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H(t) = | eith-l(w)dw , t >0, (6.52)
-
=0, t<0.

The element hjk(t) is the response at qj when a unit velocity is
produced only at 9> for Q) = eee =9q = 0 at t = 0, Again by symmetry,
hjk = hkj' By the convolution theorem of Fourier transforms, we may

replace (6.51) by

t
q= f H(t=t)f(T)dT . (6.53)
[o]

Equation (6.52) shows that the impulse response matrix H(t), which is in
the time domain, is equivalent to the frequency response matrix Z-l(w),
which is in the frequency domain.

We noticed, while writing out Zarghame’s expansion method for
natural frequencies and normal modes, that it is possible to extend it
to include frequency response.

We assume Z is given by (6.47):

Z =K - sz + iwC . (6.47")

1)

distributions of member properties as contained in K, M, and C. Now m

Let X ooy Xm be the set of random variables that describes the

is the total number of distinct sources of variability in K, M, and C,
which may be bigger than the number of members in this case. (For
example, parallel acting but distinct sources of damping and stiffness
in the same number would require two different X“s,) We recall that

before m equals at most the number of members according to Zarghame’s

formulation.




We seek an expression of the type

-1, - 1 2%z
YA = + I ( ) X ZX ( ) X + cee o (6.54)
£ j j j ax axk jxk

We also seek a simple method for evaluation of the partial derivatives.

Consider

zz7l .1, (6.48°)

The differentiation of this equation with respect to Xj gives

J

premultiplication by 27! produces

a2t -1 3z -1
X *y

Since by (6.47°), noting that w is a parameter,

) A 2
=K, ~wM, + iwC
aX =] =] e

we now find

-1
9Z -1 2 -1
.53(:]—)0 =2 (Ej - ‘!j + img.j)i

where under bar means evaluation is for the system with all member

(

parameters taking their mean values. Equation (6.58) is the sensitivity

coefficient of the matrix Z_l.

Next, the differentiation of (6.55) with respect to Xk produces

32z 1, 9z 3z -1 Y 2z} (6.59)
5 .
EXJaxk ax X 9K sxj ]

Again, premultiply by Z -1 and rearrange to obtain
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o227t 1%z 1 sz ezt -1 ez gt (6.60)
5)(:‘3)11k §xjaxk W; Sxk ﬁk‘ Exj
We now use (6.56) and (6.57) to yield
2?7} -1 2 -1 2 -1
(3_)(_37(:)0 =27 (Ej-“ §j+1ng)g (Ek-w !kﬂwgk)é (6.61)
+ Zfl(Ek-w2§k+iw§k)§f1(Ej-m2§j+iqgj)§f1
since also by (6.57)
ﬁa_zz_ =0. (6.62)
3%

It is straight forward to obtain the higher derivatives of Z-l. Thus,
(6.54) can be carried as far as needed.

The first obvious advantages of this formulation is that it applies
to any type of structure with variability in K, M and C. Second the
needed information is contained in the system with mean elements only;
once this information is in hand, everything else follows. Because of
(6.62), the next different}ation of (6.59) with respect to Xl, say, will
have no second or higher derivatives of Z, and hence, to pro:;ed further
is not difficult. It follows that this formulation appears attractive.
Convergence requires attention, of course. Further, numerical
computational ease must be established. case in [44] although the ideas
there expressed are interesting. Normal coordinates?

Randomness in parameters can be introduced into the coefficients in
K, M, and C, or through structural elements as suggested above, or by
assuming that the natural frequencies are themselves random variables as
in (35, 36].

The purpose of this short digression is to emphasize to the reader
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that the choice of the equations of motion merits careful consideration
so that what 1s important in a problem is included. Let us now return
to the above references [1,9,11,21,24,27,28,30,31].

Lord Rayleigh [l] was not interested in our topic. However, he
did, for a different reason, find formulas for the deterministic change
in a natural frequency and corresponding normal mode when the
coefficients in T and V (in the normal coordinate formulatiom) are
subject to small deterministic changes. His formula for the changed
natural frequency is (in our notation)

2 2
kr+6kr n (6k g Gmrs)

2 —s

w = :___. - z’
Tontm, el mam (wz-wz)
—S—T -8 —T

where s # r in I’. Randomness can be introduced by replacing 6krs and
Gmrs by small random variables. The first term represents the change in
wr due to change in mass and stiffness without changing the mode shape;
the second term is due to the change in mode shape. This formula is not
used today, since changes in parameters in the normal coordinate
formulation are not of direct concern. We bring it in because it shows
that this master of small iteration was aware that small parameter
changes may alter wi by large amounts, which is of concern today.
Reference [9] is concerned with the sensitivity coefficients of the
buckling load of plates with random thickness and [] discusses the
vibration and buckling of a column with spring supports and axial loads
treated as random variables and with material and geometric properties
considered as correlated random functions. The key formula in [9],

attributed by the author to Jacobi, is the same as (36.17), which is the
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interesting point. Reference [31] employs a perturbation method (only
linear term in (6.32)) for eigenvalue change; the interesting point is
that a Monte Carlo simulation is employed to check the analysis. The
computer simulation is briefly described. The results from analysis and
simulation diverge as the variance in the parameters increase and this
is disp. ved graphically.

References {21,24,28,31] employ either sensitivity coefficients or
linear term perturbation expansions (first two terms on right of (6.32)
and (6.33)) to examine influence of random parameters on natural
frequencies and normal modes. Their techniques are in the same general
form as given above following [27]. Except for the last, randomness
resides in the terms in K, M, C; in the last, the component mode
synthesis method [16] is used directly to derive the perturbation
equations, which makes this paper [31] potentially interesting to those
confronted with an actual problem, and hence randomness may reside in
the structural elements, Numerical difficulties in carrying out the
computations are discussed in [28] and [30]. Reference [31] mentions a
computer code of NASA.

The linear chain geometry assumed for the physical system in [11]
makes it possible to employ a different technique to derive the
perturbation expanéion than described above. This technique employs a
transfer matrix method [68,69] and it is applicable whenever a

The references [1,9,11,21,24,27,28,30,31] address the eigenvalue
(natural frequency) and eigenvector (normal mode) problem in structural
systems by perturbation methods. Before discussing methods or

techniques involved, it is important to understand at the outset that
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the geometry of the structure, how its equations of motion are
assembled, the final mathematical form of the equations of motion, and
how randomness in parameters is introduced have a profound influence on
the nature of the results obtained.

A structure’s geometry can be in the form of a linear array (chain)
of elements that may, for example, consist of simple harmonic
oscillators strung together in a line, beam segments continuously
connected at a sequence of supports in a line, etc. The geometry is the
simplest possible in such arrangements. Plate or shell type structures
have a two dimensional grid-like geometry and are next in order of
complexity. Finally, we have the general case in which one or two
dimensional geometries are’either missing or are interconnected in a
complex manner.

The equations of motion depend on the coordinate choice,
particularly when the fact that mass is always distributed is taken into
account. Reference [26] discusses methods of making this choice and
illustrates the substantial difference in response that can occur due to
different choices. Reference [16] also discusses a component mode
synthesis method for selecting coordinates and assembling the equations
of motion. We cannot present any of this material here in spite of its
importance.

A coordinate transformation of the equations of motion is sometimes
employed as in [9, 44]. The altered form of the equations may be
advantageous for our purpose as in [9] bu. this does not appear to be
the structure consists of a chain of cells or units. Let us consider

this method in some detail.
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Consider the system shown in Figure which is linear chain of

oscillators (See [11]) and where

U.l '—'uz
1 My %2 M

n—2 n -2

we have, for the moment, ignored randomness in the parameters. The

kinetic and potential energies are

n ..2
2T = sap (6.63)
2 = z k. (u-u. )2 e =0
R I Lo ? o ’

which gives as equations of motion

mju 3 + kj(uj—uj_l).? kj+l(uj+l_uj) =0, j=1, vas, n=1 (6.64)
mu +ku =f§ eimt .
n n nn o
Introduce a new coordinate
W, = u, -u, ; 6.65
h| j+l b/ ( )
let
- fwt _
uj = xje I o , (6.66)
iwt
W, o= e .
377
and let
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where I is the 2x2 unit matrix

2
l_fj+1°’ 52
ki1 j+1
d =
j m m2 k.
B L K
ki ki
=(I+Tj+l)dj+1 , i=0,.
mnw
1-—4— -1
n
dn-l = 2
m o
5 1
n
= (L+T)d ,
= n n
N Kab1
k K
h| b
= 2 , j =
i S S
k, k
j J
2
mnm
n
T - ) ,
mnw
z 0
n
0 xn
do - y |’ dn - fo
° kn

(6.67)

(6.68)

(6.69a)

(6.69b)

We can now relate the first displacement vector d0 to the last dn by
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n
do = ? (I+Tj)dn . (6.70)

The matrix I + Tj transfers dj+1 to dj; hence, the name "transfer
matrix". Any structure whose geometry is a linear array of units, such

as in the above Figure, or of beams, etc, can be treated in this manner.

n
Let the elements in the (2x2) matrix I(I+T.) be a, (w). Then

h| jk
(6.70) becomes
0 ap (@) a0 x
= . (6.71)
o a31(W) 25,(w)
The natural frequency equation of the chain is obtained by letting
fo = 0 and taking the first equation in (6.71); it is
?ll(m)xn =0 (6.72)
Since xn cannot be zero, the frequency equation is
(w) =0 . (6.73)

a1

In (11]), details, which do not concern us here, are worked out for the

natural frequencies when k, = k, m, = m.

3 3

Now assume the masses are random variables taking the form

mj = (1 + Xj)m , (6.74)
where Xj is a dimensionless random variable with mean zero. Introduce
2
2 mw X
- B -—d 9
k k
mw mw X
+ . 0 + 3 0
k
then, with kj = k,
"- I I\-.I f:t'f:+:f{¢'z I I l ; ) e . I_J\': f?: \-:.: -~ } > q.\‘*f‘ \':‘\F
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B ;
- I+Tj-I+T+Ej, (6.76)
. Now (6.70) takes the form
S n
; ;Q d_ = zlx (I+T+Ej)dn (91)
, or
! =
: n, 2 j=1 n-j
e d = [(I+T)" + I (I+T)J "E (1+T) (6.78)
)& [+ j=1 j
n-1 n
+ 1 1 (il (I+T)k-j-IEk(I+T)n—k
j=lk= i1 3

n
+ ...+ H E d .
1 3%

A number of substitutions then make it possible to expand wr in a series

in the X, :
h

n n- 2 n-1 n
w =w + I w X.+ [ o X+ ¢ I w X + oo o (6.79)
I = T I T I AR St

ax =5s B YNE

The main point to note is that normal modes of the mean system are not

O

employed. Let us contrast this method with that of Zarghame’s.

Return to (6.63), let kj = k and mj = m and employ (6.74) to obtain
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M=M+ IMX
- =53
0 e
m LN ]

M
0 0 ..
2k -k 0 XX
-k Zk 0 LY
_K_ . . . see
o 0 0 ...
0 0 0 sce
1 2 cee jo--
0 cse O...
0 0 s O...
M . . oo eses
=3

0 0 see Meeoeo
0 0 ... O...

the rth

Let w_and a_ be respectively
- -T

of the system with mean elements (i.e. M = M, K = K).

K=K.

0

n

(6.80)

(6.81)

natural frequency and normal mode

There, from (A7)
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(-
= :
3 (_fE) - - gﬂ alM a (6.82)
!' 3XJ o 2 —r—j=x°
2T
waMa
ai‘;)--Z’—E“—’g—‘i , k#*r, (6.83)
b % =
aMa
glt) . _ = Jjr
g! rj 2
' 22w B 3m

r = 1
Gx 3}&)0 %o [-2 (ax axk °

(1)g(r)_g(r)g (1)
+ I’ (li._j 1k Blj )(w )

(6.84)

[ 2

dw

(r) (r)
+4w(( )B ( =) By .
j o rk axk orj

AR

We observe from (6.82) that the j sensitivity coefficient of w_

28

depends only upon Er’ a and M,. Let

E = S
‘S T. (a(ll, a(z), R d(n)) .
2 -T -T -T

Then (6.82) becomes

ow
_:E)
axj o

:‘
l{,

s

-5 (a(j))z; (6.85)

remembering from (A6) that the gf_j) have the dimension 1/\|m, we see

B

that the right of (6.85) has the correct dimension. To see that the

i S; sign is correct, observe from the first two terms on the right of (6.32)

‘ that
f—

N mw

.y - T (342

b b8 - e 7)XK, (6.86)
ﬁ Positive Xj mean increase in mass. We know from Rayleigh’s Principle

K [1, Sect. ] that an increase in mass lowers or leaves unchanged every

natural frequency; thus, the negative sign on the right of (6.85) is

correct.,
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The importance of the sensitivity coefficients (6.85) and (7A)
resides in the fact that they reveal by their magnitudes those wr that

are either sensitive or insensitive to uncertainty in member values.

k)
b

(6.84). The main point to observe is that now we need all gr and 9:.

On evaluating the Bi from (6.83), we can write down the right of
Thus, we can obtain the partial derivative values appearing in (6.32).
We refrain from these obvious details to conserve space,

Let us contrast Zarghame’s procedure with that given in [11].

In the former, we need all Er and Er to obtain (6.32); in the
latter we need all . but not the normal modes since the intermediate
coordinates were eliminated in obtaining (6.70). Thus, Zarghame’s
procedure does require more information than required in [11]). However,
since all computer codes produce the Er along with the Er’ the
additional information required in the former is always available

anyway. Hence, relative to effort the two procedures do not differ

substantially,.
The sensitivity coefficient wlj in (6.79) is given by
W, o= 2 E B,, cos B (6.87)
13 \jm "1j o’
where
(2r-1)n

Bo(r, n) = (6.88)

2
Bly = = Zm

While these are easy to evaluate, the physical significance of changes

2(2n-1) *
sin2 23 B tan B
o o

in particular parameter values is not as easy to grasp in (6.87) as is
the case with the corresponding formula in (7A), This difficulty

increases with w2j’ and wljn in [11]. Hence, from the point of view of
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physical understanding of what is of significance in a system relative

. to variability in natural frequencies, Zarghame’s procedure appears

. superior to the procedure given in [11].

?{ The main advantage of the method given in [9] is that by exploiting
the system geometry explicit formulas can be written out for the

zg quantities of interest., However, since all computations are now

gﬁ performed on a computer, this is no longer an advantage.

Two other points deserve comment. First, the formula for mr in
gg [30] only employs the first two terms on the right of (6.32). This
- makes
&

a E{wr} =a.
o whereas in (6.32)

Ii azm

1 r
E{wr} = 21: + 3 ZX(W)E{Xij} + e &

;3 Thus, in [30], the mean of wr is the mean system _u_)r. However, from the
formula above this is not correct not the case. Also, (6.32) gives a

o different formula for variance of wr than given in [30]. It follows

w that the method given in [30] is incomplete. Second, sensitivity

ﬁ coefficients also play an important role in other types of system

ﬂ behavior analysis such as automatic control [14,15,18,19,25]. Since

- large space structures will contain control systems, uncertainty in

;i control system parameters coupled with uncertainties in the structural

Iy system parameters must be kept in mind.

5

References [5,8,11,20,29,35,36,37,39,40,42,43,48,49,50,52) discuss

frequency response, impulse function (Green’s function, impulsive
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admittance, impedence) mainly by perturbation methods. Those that do
not involve perturbation methods are [5,8,20]. Let us take up the
latter group first.

The technique involved in [5,8] for assessing the variability of
frequency response (or impedance) is what might be called the direct

method. For a one-degree of freedom system, we have

Z-l(m) = (6.89)

1
K-w2M+imC '

where K, M, C are scalar random variables. There are cases where
knowing the distributions of independent K, M, and C explicit results
can be obtained. While interesting results can be obtained by this
method, it is clear this technique is of limited practical use in
complex systems. -

Reference [20] starts by making assumptions about the statistical

characteristics of the Green’s function G of a system, and writes the

response as

q(t) = [ G(t,T)f(T)dT . (6.90)

G is then related to the equation of motion

q = -Aq (6.91)

by assuming

A=A+ N(t) , (6.92)
where A is a constant matrix and N(t) is a normal noise process. On

letting

h A TR S
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t
Ww(t,T) = [ N(8)dS , (6.93)

|. T
we find

G(t,T) = [A+N(T)]e

" ‘,;"‘;

-A(E-T)H(e,T) (6.94)

Means and moments of q(t) can now be obtained in terms of the moments of

X~ |

G(t,t). If we take N(t) to be independent of time, then this technique

applies to our problem.

2,

We observe from (6.94) that even the expectation of G is not easy

to evaluate because of N(T) in the coefficient and W(t,t) in the

e

exponent. By assuming N(t) is generated by filtering a white noise

[

process, it is shown that the moments of G(t,T) can be evaluated.

) Further investigation of this interesting technique is necessary before

I

we can determine if it can be east in a form useful to us. Even if it

can, additional work is necessary to establish that it can be applied

when N(t) is constant or only slowly varying.

;I
w

Y, Advantage is taken of a specific structural shape from the outset

!! in [11,39,50]. The first two assume a linear chain of similar elements
- differing in the random nature of element parameters; the structure in

:ﬁ [S0] is a circular chain. Linear one degree of freedom damped

oscillator elements are assumed in the first reference; damped
i Bernoulli-Euler beam elements with random lengths are assumed in the
second; and a continuous distribution of linear spring connected linar
o= one degree of freedom oscillator elements, as in buckets or a turbine
N disc, is assumed in the third. When damping is assumed, it is taken as

small so that undamped normal modes can be employed. The transfer

matrix technique is employed in [11,39] since a chain-like structure is

|_nH

w .-w
g |
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assumed; this makes it possible to obtain analytical results that are
. complex indeed. Because of this complexity, it will require
considerable effort to obtain numerical results, and it is by no means
s clear that what is proposed is as easy to use as (6.54). The periodic
g circular structure in [50] makes it possible to employ Fourier series;
: results on natural frequencies, normal modes, and response are obtained;
:i on throse rare occasions when a structure has a circular form, the

technique employed could be considered but not otherwise. Excellent

- graphical results that assist in understanding in a qualitative sense
l the effect of disorder on response are presented in [11,39]). All point
o out that high variability in response will occur in lightly damped

o disordered systems. The techniques employed lack the generality of

(6.54) and are not of direct interest.
II Let us consider [35,36,37,42] next. 1In each of these references

random parameters are introduced in special ways which renders the

.
v
s

A

technqiues used and results obtained of limited use. [42] does

introduce a new quantity of some interest; they consider the equation

.
)
|

mx + k(l+e)x = f(t),

o
3 where € is random with zero mean, and introduce
- 2 2
) B () (0) |
Vix“(t)] = 3 (6.95)
()

as a measure of the time for the mean square response E{xz(t)} to
deviate from the unperturbed response, {i.e. x2(t) with t = 0. The
normalization with respect to the time average <x2(t)>t is selected so

that V[xz(t)] +1 as t *®, A simple expression is then produced for

-
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the envelope of V, namely

! 1,222

2 -2w0t

., Vix (t)]env. =]1~e , (6.96)
:j where wz = k/m, 02 = Var €. V is essentially the growth in uncertainty
!! in the response as a function of 02 and t. This is a nice idea that
v merits development since it says that when

i

b 3wl > 4
o response location is lost.
~ Papers [48,49] merit attention not for techniques involved but
a rather for some qualitative results that may be of interest in

. connection with large space structures. Reference [48] discusses wave
ij propagation in long beams with many supports, where there is random

~ variation in length among the beam segments. The point of 1nte;est is
l' that the random variation in length among the beam segments has a
;3 substantial influence on which type of flexural waves will propagate ard
i which will attenuate. Reference [49] is concerned with the confinement
INg of vibration to certain regions of a structure due to structural
o disorder. The reason for noticing them resides in the fact that in a
;j large space structure it may be desirable to introduce structural
f: irregularity in order to prevent wave motion from propagating throughout
- the structure and/or confining vibration to a favorable region of the
22 structure. These references would then form a useful starting Point. ‘
e It should be noted that the "receptance method" [50], frequency response |
é: method, and the mobility method provide essentially the same approach;

the advantage of the first and third of these methods lies in techniques

. o !
-----
.
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S
2
S
3 for obtaining the frequency response in a sequential manmer. Referene
) ! [52] investigates failure probability in a structure with uncertain
ﬁ \ properties; it emphasizes the importance of considering these
f, we uncertainties when estimating such probabilities.
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VII. Liouville Equation

The techniques discussed in Section 5 are based directly upon the
equations of motion. For example, the perturbation expansion of the
frequency response Z-l(m) employs the equations of motion to derive
Z_l(w) and the relations it satisfies. There is another approach based
upon the Liouville equation for the time evolution of the joint
probability distribution function of the state space (2nxl) column
vector x and the system parameters. We consider that approach in this
Section.

The use of the Liouville equation in mechanics and statistical
mechanics is of long standing [51,52,53, for example and going back to
Maxwell]. These references do not assume system parameters are random
variables, and average of quantities under equilibrium conditions is of
main interest. While not of direct interest to us, it 1is possible to
adapt these early methods to our needs. We derive the needed form of
the Liouville equation following a procedure suggested by Kozin [5].

Consider the equations of motion in the form given by (1.27) with £

X = Ax , (1.27°)
where x is the (2nxl) column vector whose transpose xT has the form
xT = {ql, cees Q3 ;1, ceny ;n} and A is the (2nx2n) matrix given by the
first of (1.28). The vector x 1s the state space form for representing
the system response; the components of x will be denoted by xk(t), k =
1, «e¢y, 2n. The random variables in A are, as before, denoted by

Xl’ ooy Xm' We will rewrite (1.27°) in component form as

A PR P p S n N AP
GOt RO RN SO ek iy
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xk = gk(xl’ T x2n; xl’ sy Xm; t) ’ k = 1’ eey 2n . (7°1)
'I Let p(xl, cees Xy 5 Xpy oeeey X t) be the joint probability

distribution of the random quantities Xy eeey Xy 5 Xl, ceey Xn. We

-~ define the characteristic function ¢ as
’! 2n m .
» = 9 = - . .
g ¢ = Elexp 1( I 8 (0) + I X)), 1= \|7T (7.2)
k=1 §=1
= The differentiation of (112) with respect to time gives
o
20 2n . 2n m
Ry =E[i £ 6 x (t)exp 1( Z 8 x (t) + L ¢ X)] . (7.3)
T It oy Kk oy KK jop 43
The use of (6.1) in (6.3) yields

= 3 2n 2n m

=1 L8 E[gexpi( L8 x (t)+ Lé¢X)]. (7.4)
g T e kK k=1 KK j=1 11
N

) Since (7.2) is essentially the. Fourier transform of the joint density
& function p(xl, Xy Xl, cesy Xm; t), the inverse Fourier transform of
(7.4) produces

N
- N IO

! -3-%= ‘fﬂrxj—. (7.5)

The solution of (7.5) for p is given by a suitable function of the

}: independent integrals of the Lagrangian system
.
- dt -dp _dx 9%y 7.6
: T "o 3, £, T E ¢ -6)
ph 1 2n 1 2n
P (W‘P .o .‘f—a—g)
-
:; Let Upy eees Uy be 2n-independent integrals of (7.6). Then we know
) that the general solution of (7.5) is
. p(xl, ceer Xy Xl’ censy Xm; t) = h(ul’ cees Uy s Xl’ ooy Xm; t) L
.‘ where h is an arbitrary function whose form is determined by the initial
4{.
-,
he
o .‘t"\’.:ﬂ' .;;_;f - \-'.;:‘.;:"-; ':-.‘ ".‘: .:"; .: :; ,' .:':-.':\- { -C:;\::; ;':-:"~.:\".:~' ,:\‘ {:‘.:\-".: .:.:1' .;*,'.‘ 4\'_:-' ‘:-l' ;-.\‘-:,:::{-' :-‘_:-t:::.‘:‘": \q‘\:-':-:::.'_\‘c'{ :u':-‘.‘:#_: ;1‘:)';
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conditions on x.
The 2n-integrals Ups eees u, may be determined in one of two ways.

First, the general solution of (7.6) is

At
X =e x_;
[o]
thus
e Aty =y, (7.8)

where u’ = {ul, ceey uzn}. Further, for distinct eigenvalues of A,

e =y U (7.9

where Xl, cens in are the eigenvalues of A, and U is the (2nx2n) matrix
of corresponding eigenvectors of A. This is one way to determine the 2n
independent integrals u required in (7.7).

The second method employs Laplace transforms and the equation

x = Ax with xo =y , (7.10)

Then from the Laplace transform of this equation, we find

L (s - 7 Hx = u g (7.11)
it should be noted that the u’s depend on the x’s and the X’s. To
evaluate the inverse Laplace transform, we need the eigenvalues of -A

or, equivalently, the roots of (Is-A) = 0.
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Either employing (7.8) or (7.11), we have the required integrals.
Hence, in principal, we find with (7.7) the exact expression for the
joint density p, the arbitrary function h being determined by the
specifics of the problem addressed.

Consider the case where the parameters Xl’ ceey Xm are independent

of the integrals (i.e. the initial vector). Then (6.7) can be written

as

p(xl, cees X5 Xl, cens Xm; t) = hl(ul’ vees Uy 3 t)hz(Xl, cees Xm) .
where h2 is the joint density function of the parameters. Suppose we

are interested only in the impulsive response for ql; this means at t =

o, Xl - 1, with all other xj = 0, Then at t = 0,

p(xl, cees Xy 5 Xl, ooy Xm; 0) (7.12)
= G(xl)...G(xn)G(xn+1—1)... = - G(xzn)hz(xl, cees Xm) .

In view of the fact that at t = 0, u = xo, we see that

hl(ul, cees Uy t) = G(ul)...5(un)5(un+1-1)...5(u2n) ,

where §(.) is the delta function. Finally,

p(xl, cees Xoos Xl, ceey Xm; t) (7.13)
= G(ul)noos(un)d(un+l-l)nood(uzn)hz(xl, ceey xm) .
Let us now illustrate this process with a simple example.
Consider again the undamped one degree of freedom linear

oscillator. Let K/M = q? be a random variable with sample value denoted

by wz. The first order system representation of the equation of motion

is

: e e i e e e e e . 0
e T I G T .N’&"‘-' *U 75 2.0 *"-’s‘ﬂ ""\" -2 .r"f‘ ‘.." -r" «-":“:
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X, =x, = f1 . (7.14)
y 2
Xp = ~x = £y .
Equation (7.5) becomes
3 3p _ . o2 _3p _
gg+x2axl ﬁn&% o, (7.15)
and (7.6) takes the form
dx dx
2 xlﬂ

We now find the integrals of (7.16); they are

X

= x,cos Qt - 2 sin Qt , (7.17)

u Q

1

u2 = xlﬂ sin Qt + x2 cos it .

Assume, for example, 92 has a discrete distribution given by

2y, (7.18)

2, 1° 2
= s -
hz(w ) z Py (w mi

1

If we are interested in the impulse function, at t = 0 we have x = 0,

x, = 1. There, (7.13) becomes

p(x,, x,, w?; 1) (7.19)

2

n
2
G(ul)é(u2 l)fpid(w —wi)

X

n
= §(x,cos wt - —zsin wt)é(wx,sin wt+x, cos wt-1)Ip G(mz-wz) .
1 w 1 2 1 i i

Let us determine the mean of X to illustrate a possible use for

(7.19); we have

E(x)} = [ax fax,[d’[x p(x}, %, w? ] . (7.20)

Some manipulation (see [5]) yields

i |
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Other illustrations, including damping, are given in [5,6]. We are

(7.21)

frequently concerned with the moments of x. Let us next consider how
(7.5) can be employed to do this.
To keep the details simple, consider the linear damped one degree

of freedom system with equation of motion

X, = x, =8 » (7.22)
. K c
T TR T

Equation (7.5) now takes the form

B(flp) 3(f2p)
+ =0, (7.23)

1 9x,

Assume the M, K, C are independent of the initial vector with hz(m,k,c)

9
t + 9x

the pdf (prob. den. function) of these parameters, and write

p(xl, X, mlk, cjt) = pl(xl, X,3 t)hz(m,k,c) (7.24)
Then pl(xl, X3 t) is the joint pdf of X, and Xy conditional on M = m, K

= k, C = ¢c. Since h2 is independent of Xs Xy and t, we can write

(7.23) as

ap a(g,p;) 3(g,p,)
1, P17 2P1

at axl 3x2

=0 . (7.23%)

Let the expectations

E{xllm,k,c} = ml,O(t)’ Ec{x2|m,k,c} = (7.25)

0,1(t)

be conditional on M, K, C. Let us evaluate these expectations;
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ECE{xllm,k,c}{xl} = ml,O(t) » ffxlpldxldx2
ECE{lem,k,c}{xz} = mO,l(t) - ffxzpldxldx2

Differentiation (partial) of these equations with respect to time

produces
. ap
1
™0 ffxl-sg— dxldx2 (7.26)
= p
m,1 = /%, 3¢ dx;x,
But, from (7.23°),
% 3(g,p,) _ 3(gypy) 7.27)
it axl 8x2 * ‘

The substitution of (7.27) into (7.26), the employment of (7.22), and
integration by parts of the resulting terms on the right of (7.26)

finally yields

“M,1

[+
%0,1 n ™0 @m ",1

The same procedure will produce the equations for the conditional

1,0 (7.28)

moments Ec{xflm,k,c), Ec{xglm,k,c}, etc. We note that for the first
conditional moments we could have taken the conditional expectation of
(7.22) to produce (7.28); however, this procedure only applies to the
first moments.

We integrate the moment equations (7.28) to obtain the conditional
moments as a function of time. On multiplying these moments by
hz(m,k,c) and integrating over m, k, and c, we obtain the moments of x

1

and Xy.
It is clear from the above discussion that the Liouville equation

will provide the exact solution for the joint probability density

N - ‘ X AN A . N AR -~ - LA A A T T a2 T A o T T O <
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o

2

function p(xl, ceey xzu; Xl, voey Xm; t) in the absence of external

forces provided the integrals u can be obtained. Further, it

1, es ey uzn

provides a straight forward method for determining the moments of x from

3} which means and variances of x can be obtained.

The Liouville equation applies when there are no external forces.

a3

We are interested in the case when external forces are present, of

course. Let us see what can be done along these lines.

2=

The Fokker-Planck equation 18 the natural extension of the

LA

Liouville equation. This equation has already been derived above. (See

Section 2 and also [8]}, [6b]). We confine attention to the case in

| S0

which the external force vector f can be obtained by passing gaussian

white noise through a stable linear damped system. We have as equations

s e ¥
L

of motion, conditional on M = m;, K = k, and C = ¢,

dx1 = xzdt ’
o dx, = - E-xdt: - £ x.dt + x.dt (7.29)
.':_: 2 m m 2 3 ’
dx, = -Bx,dt + dB , x,=0at t =20 .

3 3 3

where we have employed the differential notation in this case, set f =

g

Xqs and where dB is the Brownian motion increment (see Section 2) with

2
’ 2 2
E{dB} = 0 , E{(dB)"} = o°dt . (7.30)
o
2] The last equation of (7.29) represents the fact that the excitation is
" obtained by passing a gaussian white noise through a linear first order
<
- stable filter. We notice that for the Ito system (7.29)
:2 xT = {xl, Xy x3} is a vector Markoff process that generates a Fokker-

Planck equation.
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It can be shown that in this case the Fokker-Planck equation for

the conditional probability density function p1 is

ap
1 9 d k c 1 9
o = - 3-)-q-(xzpl) 3;;4(- = %1 x2+E x3)p1} 3;;<-Bx3pl) (7.31)
2
ke
2 3x§

We observe that all but the last term on the right are the same as would
have occurred in the Liouville equation in the absence of f. Let the

conditional moments be

kl k k3
kg ok, T ERL X2 *3 ) (7.32)
k ky k3
= fffx X, X37P; (X}, Xy, X5)dx, dx,dx,
Then, proceeding as in the development of (7.28), we find

™,0,0 - M0,1,0
()m

c 1
"1,0,0 S @m0t @ 0,1 (7.33)

B 0,1 " "% 0,1

On multiplying the solutions of (7.33) by hz(m,k,c) and integrating out

0,1,0

the condition in these three conditional moments, we finally obtain the
moments of x as a function of time. We obtain in analogous fashion the
differential equations for the second conditional moments; we do not do
this as the steps are of a mechanical nature and not of direct interest.
The main point to notice 1s that differential equations for the
conditional moments of x can be obtained when an external force is
present in the equations of motion provided this force is produced by

passing white noise through a suitable filter.
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It is important to point out that for any gaussian external

excitation the solution vector is gaussian conditioned on the random

parameters. Therefore, all conditional moments can be obtained but not

2

:::, as easily as above [79].

- The Liouville equation enabled us to obtain, in a straight forward
- manner, the exact expression for the conditional probability density

:~ function Py Reference to (7.31) suggests that it will be much more

- difficult to obtain Py from this equation and we shall not pursue this
;’é line of thought further.
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VIII. Mean Square Approximate Systems

We consider, in this section, a technique for including disorder or
parameter uncertainty that follows a different line than taken in
Sections a) and b). Specifically, mean square systems are employed. We
begin by introducing this type of system [13,17].

Let us begin with a very simple example in which there is no
disorder and no damping. Let the coordinates be Qs eees Qe Then,

with

2T = mjkqjqk’ 2V = kjkqjqk’ W = fj(t)ﬁqj , (8.1)
where summation convection. Then (1.24), with mass coefficients
included, can be rewritten as

mjkq k-+ kjqu = fj(t) . (8.2)
Let, with f constant,
o}
fj(t) = fojcos(wt + ¢) . (8.3)
Then, the forced motion
q = ukcos(wt + ¢) (8.4)
satisfies
(k. - wm,du =£ .. (8.5)
ik 3k’ T oj .

These equations state that given the fo and w, the u are determined by

]
the solution of this linear system of equations. Further, if w is the

natural frequency mr and the w define the rth mode shape @ then the

f must vanish. Let us look at the natural frequency problem in an

o]

unorthodox manner.
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N
\ \"
b v *_:
f: ) Suppose we pick an w and a set of w which may not be one of the
i natural frequencies and normal modes. Then the right of (8.5) will not
% be zero and we need force amplitudes Ej to produce this motion:
> o
.
!‘ - 2 = .
(kjk w mjk)“k Ej (8.6)
' The sj are the amplitudes required to maintain the assumed motion; we
\ "y
b
.- regard the ej as the amplitudes of the constraint forces required to
' ]
HEEEN produce the motion.
Y Consider next
2
N T2
b é I(n,w) = Z ej >0 . (8.7)
: 1
; For a fixed w, this is a positive definite quadratic function of the
- u‘s. We can use this equation to find the natural frequencies wr and
- .
»

corresponding normal modes a Assume the u’s are normalized in some

rk’

manner (for example, u = 1 or better mjkujuk = 1). For fixed w, we

‘)
b 3

find the minimum of I(u, w) » 0. Notice that if w = mr the u’s that

ey

produce a minimum are the a = and I(ark, wi) = 0, since the €, = 0, j =

rk j
1, «e., n, in this case. It follows that if for a specified w we find

1

the minimum of I(u, w2) and this minimum equals zero, then this w is a

~
4! . ‘.)'-
K - natural frequency and the u that produce this zero minimum are
> ;7 proportional to the corresponding normal mode. Let us consider another
- ) interesting aspect of this method.
-
~ Consider a frequency window g(w) with the following properties: |
. \
e |
NN
b
)

"‘:.':
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glw) 0, w Sw<<w , (8.8)
w w 2
[ glw)dw =1, [ wg(w)dw < =,

w W

Replace (8.7) with

w
I(u, 8) = [ ZLefdw . (8.9)

w

2
3
Find the u that makes (8.9) a minimum. The interesting feature of this
method is that if there is a natural frequency of the system in the
frequency interval (wl, m"), the u in min I(u, g) determine the normal
mode of this natural frequency. Let these u be in component form

{ugr), cees uﬁr)}; then the corresponding natural frequency is

determined by the Rayleigh quotient:

WD)

(r) (r) °*
13 e

where we assume we have found the rth normal mode and its natural

2 k

w k

(8.10)

frequency. It follows that if there i1s concern that an interval
(w’, w',) contains a natural frequency, we have method for determining
if this 1is the case without determining all natural frequencies of the
system. References [13,17]) give details on this matter we cannot
discuss in this Report.

The computational problem of finding the minimum of I(u, wz) is
carried out using one of a number of computer codes based upon conjugate

gradient techniques, and, hence, is not a problem.

So far, there has been no disorder in our system; i.e. the

parameters mjk and kjk have been assumed to take definite values. Let
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us assume at this point that mass and stiffness contain random
variables. We define, in this case,

L4

w n
I(u,g) = E{ [ g(w)ze dw} , (8.11)
’ 1
w

where, in vector-matrix form

n

ze§ = u (K - wM)T(K - w?M)u . (8.12)
1
o2
Since E only operates on Zsj in (7.11), we have
1
n2 T 2. T 2
E{Eej} = E{fu (K - M) (K - w Mu} , (8.13)
1

and w is a fixed parameter in (8.13). We assume the u are parameters to

be determined. Thus, (8.13) takes the form

n
E{Ze2} = uTE{((K - 0’M) (K - u'M)}u . (8.14)

1 3
2. .T 2
We note that (K - w"M) =K - w M because of the symmetry assumed for K
and M. In all events, means and second moments of K and M are all the
information needed to determine the expectation in (8.14).
We then proceed as in the deterministic case, since I(u, g) has a

deterministic form.

To relate (7.7) to (7.13), all we have to do is assume

g(w) = 6(w - w) , (8.15)

where 6(.) is the delta function. The substitution of (8.15) into

(8.11) yields
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I(u,) = wE{(K - 62M) (K - wlM)}u . (8.16)
This expression differs from (8.7) because of the assumed random
parameters in K and M. If in (8.7), w is a natural frequency of the
deterministic system, I(u,w) = 0. The I(u,w) > O in (8.16) because of
the random parameters. Use of this fact has been made in [32] to obtain
an estimate of the variance of natural frequency wr; the formula 1is
I(ur’ wi)

Var w = ——————— (8.17)
r sz !

r
where wr is the rth natural frequency and u, is the corresponding normal
mode for the system with mean parameter values. Monte Carlo simulation
(32] reveals that (8.17) can be conservative and a correction is
suggested. Equation (8.17) is easy to use since a minimum for I is not
required. Further, (8.17) pro;ides a much simpler method for estimating
the variance of wr than given in Section V. However, mean square
approximate systems do not provide any information on E{wr} or on
variability in mode shape. Let us next consider how these systems apply

to estimating frequency response with parameter uncertainty present.

We take the equations of motion in the form

Mg + Cq + Kq = f . (8.17)
The frequency response Z- (w) and Z(w) are defined by (6.47) and (6.48).

For the external force,

iwt

f=6_e .
ir ’ (8.18)
with r fixed and Bjr =0 for j # r, 6rr = 1, the component form of
(8.17) is
R N LN T T N
e N TN T e T T AR
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-1 iwt
qj er(m)e (8.19)
' which is exact.

1
Suppose we try to approximate (8.19) with

\

\

\

qj =B, e R (8.20)

where the 8 are not known in advance. The equations of motion now are

- jr

not satisfied and we must introduce constraint forces Ej to bring about

N their satisfaction as in (6.1):
- 2 s
’ _ (Kjk -w Mjk + iijk)Bkr -8 ejr . (8.21)
.\ Form
<

1(8, w) = E{Z * 8.22
-: k] jr jr} ] ( . )

where asterisk denotes complex-conjugate., This I is just like (8.11)

i' except the B have replaced the u. We find the 8 that make (8.22) a

minimum, denote this B by B. Then, B = {81, ceny Bn} is the mean square

i -1

approximate to the Z, (w). It can be shown that if the system is

jr
I' deterministic (i.e. contains no random parameters) the B are exactly the
2 -1
Z .
J.r(w)

The Ejr are complex; hence, the right of (8.22), when written out,

is

=

’ ]

’\

n 2 2 =5
K - - K - + . 'y

.- Ryt )8 8 ge) (B ypu™dy +uC )8, =6, 1) . (8.23)
'..

- It follows that the minimum of (8.22) is for the real and imaginary

%: parts of Bkr' This added complication poses no additional computational
‘.

problem [39, 42].

.
»

L A 4 .

J‘.‘..i_ff L



S P

gw:

S

.

P

4
o
-

s

o

Y N
LA

L)
\;"1 .

‘r

§ ., o B

TR ST

"Faile h NIV VTR

- 146 -

The method also supplies an error criterion that makes it possible
to judge the accuracy of the Bkr'

References [39,42] describe in some detail how the above technique
can be applied to estimating the frequency response in a number of
structures with specific attention being paid to numerical details of
the computations. Reference [51] also describes how these techniques
can be applied to the construction of a sequence of approximants for a
complex system by starting from a highly constrained initial system and
gradually relaxing the constraints. In these three reference, extensive
use 1s made of the error criterion to determine when the estimated
quantities (usually frequency response) are sufficiently accurate for
the purpose in hand. A comment on what mean square approximate system
provide is now in order.

We observe, for example, that these systems enable us to estimate
frequency response Z;i(m) by means of Bkr(m). The Bkr(w) are
deterministic numbers that take into account the means and variances of
the statistical parameters of the structure. Thus, the Bkr(w) provide a
deterministic estimate for Z;i(w). In the form given above and in
[39,41,42], 1t is not possible to obtain statistical information
concerning the Z_l(w). However, it is possible to employ Monte Carlo
methods to obtain estimates for the Bkr(w) given the parameters are
sample values to obtain sample values for the Bkr(w) from which
statistical information can be obtained.

The statistical energy approach (SEA) merits mention at this point
since it also employs average energy concepts [55,56,57,59,80].

Basically, SEA estimates the average flow of energy from one part of a
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‘u.: structure to another. For example, 1f there 1s energy input into one
y .. part of a complex structure, this method provides an estimate of how

\":\

:\ this energy flows into another part of the structure. Thus, it is

e

*' i possible to estimate average vibrational energy present in any part of

] the structure. Information of this type is frequently the only type of
N

o CURY

:.‘;- information i1t is possible to obtain about the response in an extremely
.

AL A

j;_ complex structure containing a large number of undamped natural

I " _,

- . frequencies in 1 hertz. 1In so far as we know, nothing has yet been done
M -0

.'_‘q .

::x: . to include the influence of statistical parameters; however, the work
S

A given in [59] suggests it might be possible to do this.
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B
IX. Bound Determination - ::::hzzi
Sections V and VI discuss techniques for response estimation in _:
lumped linear systems whose parameters take time i.dependent uncertain :{,: E
values in a probabilistic setting; thus, it is possible by these }* :',y:
techniques to obtain statistical information about a natural frequency " ?::
and its normal mode, a frequency response, and a response. The :‘E:.j:::
techniques discussed in Section VII provide a deterministic frequency E..E’E
response in which account has been taken of the statistical properties :
of the parameters. This section assumes that all we know is a bound on E.:?E‘;
the parameter values; we then will be interested in what can be said ;:}h
about bounds on the quantities of interest. "g
Needless to say the stability and control of systems in which only *f.i
'L". g
bounds are known on parameter -values and the disturbances continues to '}:Iii
be of interest to those working in automatic control, economic analysis, ;
and stability theory [34,58,60,61,62]. Maximum response in structural :?\
systems has also been and continues to be of interest to structural ?.J‘:
engineers [58,61,62]; however, it 1is usually assumed the parameters in ‘ A::
these systems are known exactly. Let us consider our problem from the ..i "
point of view of those in automatic control. ;3.%
Let us consider the simplest possible linear system in order to fix : "'A‘
ideas. Assume the system is described by the first order linear %“-';E:
differential equation in the single variable x: :::E
Oy
)'{ = -(a + Aa)x + f(t) , (9.1) ?‘
where f(t) is the external disturbance, a is a known positive constant, ;ti,.z
Aa is an unknown constant with -Aa < Aa < Ba, Aa is a known positive E-'-":-

.......
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- constant, and a-da > 0. Let the initial condition on x be -

x(0) = 0 . (9.2) \

We are interested in bounds on x for t > 0. NY
We consider as nominal solution of (9.1) the case where 4a = 0; ot :E (
thus let x satisfy ?W'.-‘;f,

X = -ax + £(t) (9.3 3 3
X = -ax t .3) ‘.,.'?v'.

with initial condition x(0) = O. The solution of (9.3) is ;7

t . ’
x=Je a(t T)f(l')dr . (9.4) '«'“:'L':.I‘
(o] 'Fi 2

Introduce the error function m
y = x- X . (9.5) AR

Then y satisfies

. — -
y = =(a + 8a)y - dax(t) , y(0) =0 . (9.6) PN

Define a Liapunov function V by

V(o) = 1y . (9.7) PR

Then, ,. ‘-;.'\- ‘:
q (

.. LRIy

V =yy (9.8) _,

= [-(a + Aa)y - Aax]y

= ~(a + Aa)y2 - bAaxy ;

Let Aa = -Aa. We shall see shortly that this yields an upper bound on V o
which is equivalent to bounding the errror given by (9.5). Then, on 3\ “
taking the absolute value of the second term on the right of (9.8), we {:..‘-.\ :

Ay

obtain T

o AR S B e 2
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V = -|a-Fa|y? + Falx(e)||y| (9.9)

which from (9.7) gives

V < -2(a - Fa)V + Fa|x(e) | 2n)/? .

Next, let

1/2

n=1yV (9.10)

which gives
._1 6
"= 771/
We now can write (9.9) as

n<-(a-3Za)n+-22 | 8a 7o) (9.11)
\

Let us solve (9.11) for the equality:

n = -an + —zg |x(e)} , n(0) =0 (9.12)
\|2

where a = a - Ba, obtaining

—— t - _
= —A:f (1) 130y lar (9.13)
|2 o

or, by (9.10) and (9.11),

v1/2 ¢ La _Aa f -a(t- 1.')l (1)]dt (9.14)
\|Z o

Finally, by appealing to the Schwarz inequality for integrals, we can

write (9.14) as

1/2 1/2

1/2 <_A§_
\|Z

Let us examine this expression.

}e-zg(t-r)dr

v (9.15)

£ 2
[x¢(1)dt
o

o

N oo W A" K A IR Y
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First, the first integral on the right can be evaluated as

1/2

~2at, . (9.16)

1
Ja (1 -

Second, the left equals ?;} , by (9.7). Hence (9.15) reduces to
\

- - iy v t
ly(t)| € —B2 (1 - o 2(a Aa)t]I/ZU—;Z(T)dTII/Z (9.17)
\|z(a-K5) °

At t = 0, we get |y(a)] = 0, as we should. The term (9.16) increases to

unity as time increases., The term

t
[f}?z(r)drll/2 (9.18)
[o]

will increase with increasing time; if ;z(t) approaches 0 as t
approaches «, then (7.18) will increase to a positive limit. The bound

is proportional to

Aa

\|2(a-K§ ’

indicating the larger 8a, which determines the bounds on a, the larger
|[y(t)|. We note that the bound on [y(t)| increases with time using
(9.16); (9.14) will provide a smaller bound, of course. In all events,
equation (9.5) makes it possible to assert that x(t) lies within the

bounds

x(t) £ |y(e)| . (9.19)
Thus, the technique described enables us to put bounds on the response
given bounds on the system parameter.
The example employed above is for a first order linear ordinary

differential equation. References [ ] suggest that the technique can be
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extended to vector differential equations of this type. However, the s.;ﬁ$¥'
details will have to be worked out to determine if this promising
technique can be put to practical use, since it may turn out that the Qﬁf{ﬁ.

smallest possible bounds are too large to be of practical value. IS
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X. Physics

The physicists have for a long time been concerned with the
vibrational properties of disordered systems. In particular, they have
been interested in crystals in which disorder is present (See [63-75]).
One type of disorder is called "substitutional disorder"; here one or
more atoms in a regular crystal are replaced with another atom or atoms
different from those in the crystal (while the organization of the
crystal is not changed). The other type of disorder 1is called
"topological disorder", in this case the basic organization of the
structure is changed. A moments reflection will indicate that our main
concern is with the first type of disorder, where member properties may
change but not the structural organization. For the second type to
occur, structural members would have to be removed, added or rearranged
differently. Much progress has occurred in dealing with substitutional
disorder; much more modest gains have been made for topological
disorder. It might be hoped that much of what the physicist has done
could be adopted in toto in studying the response in substitutionally
disordered structures. Based on a relatively short study, this does not
appear to be the case because of different interests,

We are interested in natural frequencies, normal modes, frequency
response, impulse function, etc. in systems with a relatively small
number of degrees of freedom as a rule. By and large, the physicist is
interested in estimating the number of natural frequencies in a
specified frequency interval; to do this, a frequency spectrum must be

estimated. Hence, they are interested in the effect of various degrees

of disorder on this spectrum from which optical, thermodynamic,
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electrical, etc. properties are obtained. Thus, our interests are very .:‘EEE
v
different from theirs.

The early work of Hori and Asaki which introduced the method of ;?ﬁ.
transfer matrices [68,69] did provide a technique that has proved useful hC
when dealing with chain like structures. However, mechanical structures
do not usually possess organizational regularity as in crystals. Hence, tcx¢

LN
as noted above, transfer matrices have a limited range of application. -

References [73,74)] indicate how a Green’s function (impulse
function) can be employed to derive information about the frequency g}ﬂ
spectra. So far, we have not been able to determine how this technique e
might apply to structures. Nonetheless, detailed study may reveal there e
are possibilities that have been overlooked in this brief survey.

The early work of Born and Brillouin [3,6] on the effect of RV

experimental errors on the motion of classical mechanics systems is of

course classic and is worth reading just for cultural reasons. A
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Appendix A
Zarghame’s method with mass variability included.

Assume the mass matrix M can be written in the form

|

M=M+IYM
_lj_j

where M is the mass matrix when all structural numbers take on their

(14)

mean masses, and M. the mean stiffness matrix of the jth element. Now

3

some of the Y, may correspond to some of the X1 in (14). Hence, to

3
include this possibility, we set

{wl, cees wmz} = {xl, cees xm} + {Yl, cees le} (24)

with m, <m+ m, . We thus regard

K = §(w1, ooy W)

: 2
M = M(wl, LICR Y wm ) (3A)
2
Equation (19) is replaced by
Mg +Kq =0 (44)

where q is the same (nxl) column vector as in (20). Equation (23) is

replaced by

(K - wlM)a = 0 (5A)
and a is the same (nxl) column vector as in (22).
We apply the same procedure as employed before to obtain the
partial derivatives of wr and ar with respect to the wi, replacing the

orthogonality conditions (26) by
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aTMa =0, aTKx =0 1if s
r s r s
aTMa =1, GTKG = mz .
r r T r r
We summarize the results for only wr:
dw
r 1 T 2T
W, " T laKjop = v el
T 2T
(k) akgia wrakﬁiar
8 , k=
ri Wiy
r k
T T
B(r) argiar - - 1% + 1L
rj 2 2m2 w.
T
am Bw
1 (k)g(r)
2m[23w5 +£(51 kj
r J
g(t) (r)
+ 4w ( Bry' * 3w amj )]

(r) (x)
-8, 8, )(

#r

b
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